Digital quantum magnetism at the frontier of classical simulations
- URL: http://arxiv.org/abs/2503.20870v2
- Date: Fri, 11 Apr 2025 21:21:41 GMT
- Title: Digital quantum magnetism at the frontier of classical simulations
- Authors: Reza Haghshenas, Eli Chertkov, Michael Mills, Wilhelm Kadow, Sheng-Hsuan Lin, Yi-Hsiang Chen, Chris Cade, Ido Niesen, Tomislav Begušić, Manuel S. Rudolph, Cristina Cirstoiu, Kevin Hemery, Conor Mc Keever, Michael Lubasch, Etienne Granet, Charles H. Baldwin, John P. Bartolotta, Matthew Bohn, Julia Cline, Matthew DeCross, Joan M. Dreiling, Cameron Foltz, David Francois, John P. Gaebler, Christopher N. Gilbreth, Johnnie Gray, Dan Gresh, Alex Hall, Aaron Hankin, Azure Hansen, Nathan Hewitt, Ross B. Hutson, Mohsin Iqbal, Nikhil Kotibhaskar, Elliot Lehman, Dominic Lucchetti, Ivaylo S. Madjarov, Karl Mayer, Alistair R. Milne, Steven A. Moses, Brian Neyenhuis, Gunhee Park, Boris Ponsioen, Michael Schecter, Peter E. Siegfried, David T. Stephen, Bruce G. Tiemann, Maxwell D. Urmey, James Walker, Andrew C. Potter, David Hayes, Garnet Kin-Lic Chan, Frank Pollmann, Michael Knap, Henrik Dreyer, Michael Foss-Feig,
- Abstract summary: We use Quantinuum's H2 quantum computer to simulate digitized dynamics of the quantum Ising model.<n>In addition to confirming the stability of dynamics subject to achievable digitization errors, we show direct evidence of the resultant local equilibration.
- Score: 2.8109777276732992
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The utility of near-term quantum computers for simulating realistic quantum systems hinges on the stability of digital quantum matter--realized when discrete quantum gates approximate continuous time evolution--and whether it can be maintained at system sizes and time scales inaccessible to classical simulations. Here, we use Quantinuum's H2 quantum computer to simulate digitized dynamics of the quantum Ising model and observe the emergence of Floquet prethermalization on timescales where accurate simulations using current classical methods are extremely challenging (if feasible at all). In addition to confirming the stability of dynamics subject to achievable digitization errors, we show direct evidence of the resultant local equilibration by computing diffusion constants associated with an emergent hydrodynamic description of the dynamics. Our results were enabled by continued advances in two-qubit gate quality (native partial entangler fidelities of 99.94(1)%) that allow us to access circuit volumes of over 2000 two-qubit gates. This work establishes digital quantum computers as powerful tools for studying continuous-time dynamics and demonstrates their potential to benchmark classical heuristics in a regime of scale and complexity where no known classical methods are both efficient and trustworthy.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Simulating unsteady fluid flows on a superconducting quantum processor [23.24560103938476]
We report an experiment on the digital simulation of unsteady flows, which consists of quantum encoding, evolution, and detection of flow states.
This work demonstrates the potential of quantum computing in simulating more complex flows, such as turbulence, for practical applications.
arXiv Detail & Related papers (2024-04-24T13:45:43Z) - Computational supremacy in quantum simulation [22.596358764113624]
We show that superconducting quantum annealing processors can generate samples in close agreement with solutions of the Schr"odinger equation.
We conclude that no known approach can achieve the same accuracy as the quantum annealer within a reasonable timeframe.
arXiv Detail & Related papers (2024-03-01T19:00:04Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Revealing microcanonical phase diagrams of strongly correlated systems
via time-averaged classical shadows [0.0]
We propose a method to study microcanonical phases and phase transitions on a quantum computer from quantum dynamics.
We first show that this method, applied to ground state calculations on 100 qubit systems, discovers the geometric relationship between magnetization and field.
We then show that diffusion maps of TACS data from quantum dynamics simulations efficiently learn the phase-defining features and correctly identify the quantum critical region.
arXiv Detail & Related papers (2022-11-02T16:39:52Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - State-dependent error bound for digital quantum simulation of driven
systems [0.0]
We derive a lower bound for overlap between true dynamics and digital simulated dynamics at the final time.
We extend our formalism to error evaluation of digital quantum simulation on noisy quantum computers.
arXiv Detail & Related papers (2022-01-13T08:36:47Z) - Dynamics in an exact solvable quantum magnet: benchmark for quantum
computer [2.643309520855375]
We explore the dynamic behavior of 2D large-scale ferromagnetic J1-J2 Heisenberg model both theoretically and experimentally.
A quantum walk experiment is designed and conducted on the basis of IBM programmable quantum processors.
arXiv Detail & Related papers (2021-09-23T13:32:45Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.