Clean & Clear: Feasibility of Safe LLM Clinical Guidance
- URL: http://arxiv.org/abs/2503.20953v1
- Date: Wed, 26 Mar 2025 19:36:43 GMT
- Title: Clean & Clear: Feasibility of Safe LLM Clinical Guidance
- Authors: Julia Ive, Felix Jozsa, Nick Jackson, Paulina Bondaronek, Ciaran Scott Hill, Richard Dobson,
- Abstract summary: Clinical guidelines are central to safe evidence-based medicine in modern healthcare.<n>We developed an open-weight Llama-3.1-8B LLM to extract relevant information from the UCLH guidelines to answer questions.<n>73% of its responses rated as very relevant, showcasing a strong understanding of the clinical context.
- Score: 2.0194749607835014
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background: Clinical guidelines are central to safe evidence-based medicine in modern healthcare, providing diagnostic criteria, treatment options and monitoring advice for a wide range of illnesses. LLM-empowered chatbots have shown great promise in Healthcare Q&A tasks, offering the potential to provide quick and accurate responses to medical inquiries. Our main objective was the development and preliminary assessment of an LLM-empowered chatbot software capable of reliably answering clinical guideline questions using University College London Hospital (UCLH) clinical guidelines. Methods: We used the open-weight Llama-3.1-8B LLM to extract relevant information from the UCLH guidelines to answer questions. Our approach highlights the safety and reliability of referencing information over its interpretation and response generation. Seven doctors from the ward assessed the chatbot's performance by comparing its answers to the gold standard. Results: Our chatbot demonstrates promising performance in terms of relevance, with ~73% of its responses rated as very relevant, showcasing a strong understanding of the clinical context. Importantly, our chatbot achieves a recall of 0.98 for extracted guideline lines, substantially minimising the risk of missing critical information. Approximately 78% of responses were rated satisfactory in terms of completeness. A small portion (~14.5%) contained minor unnecessary information, indicating occasional lapses in precision. The chatbot' showed high efficiency, with an average completion time of 10 seconds, compared to 30 seconds for human respondents. Evaluation of clinical reasoning showed that 72% of the chatbot's responses were without flaws. Our chatbot demonstrates significant potential to speed up and improve the process of accessing locally relevant clinical information for healthcare professionals.
Related papers
- Quantifying the Reasoning Abilities of LLMs on Real-world Clinical Cases [48.87360916431396]
We introduce MedR-Bench, a benchmarking dataset of 1,453 structured patient cases, annotated with reasoning references.<n>We propose a framework encompassing three critical examination recommendation, diagnostic decision-making, and treatment planning, simulating the entire patient care journey.<n>Using this benchmark, we evaluate five state-of-the-art reasoning LLMs, including DeepSeek-R1, OpenAI-o3-mini, and Gemini-2.0-Flash Thinking, etc.
arXiv Detail & Related papers (2025-03-06T18:35:39Z) - Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
Large language models (LLMs) often struggle with open-ended medical questions.<n>We propose a novel approach utilizing structured medical reasoning.<n>Our approach achieves the highest Factuality Score of 85.8, surpassing fine-tuned models.
arXiv Detail & Related papers (2025-03-05T05:24:55Z) - Prompt Engineering a Schizophrenia Chatbot: Utilizing a Multi-Agent Approach for Enhanced Compliance with Prompt Instructions [0.0699049312989311]
Patients with schizophrenia often present with cognitive impairments that may hinder their ability to learn about their condition.
While Large Language Models (LLMs) have the potential to make topical mental health information more accessible and engaging, their black-box nature raises concerns about ethics and safety.
arXiv Detail & Related papers (2024-10-10T09:49:24Z) - Building Trust in Mental Health Chatbots: Safety Metrics and LLM-Based Evaluation Tools [13.386012271835039]
We created an evaluation framework with 100 benchmark questions and ideal responses.<n>This framework, validated by mental health experts, was tested on a GPT-3.5-turbo-based chatbots.
arXiv Detail & Related papers (2024-08-03T19:57:49Z) - Large Language Models in the Clinic: A Comprehensive Benchmark [63.21278434331952]
We build a benchmark ClinicBench to better understand large language models (LLMs) in the clinic.
We first collect eleven existing datasets covering diverse clinical language generation, understanding, and reasoning tasks.
We then construct six novel datasets and clinical tasks that are complex but common in real-world practice.
We conduct an extensive evaluation of twenty-two LLMs under both zero-shot and few-shot settings.
arXiv Detail & Related papers (2024-04-25T15:51:06Z) - CataractBot: An LLM-Powered Expert-in-the-Loop Chatbot for Cataract Patients [5.649965979758816]
CataractBot answers cataract surgery related questions instantly using an LLM to query a curated knowledge base, and provides expert-verified responses asynchronously.<n>In an in-the-wild deployment study with 49 patients and attendants, 4 doctors, and 2 patient coordinators, CataractBot demonstrated potential, providing anytime accessibility, saving time, accommodating diverse literacy levels, and adding a privacy layer between patients and doctors.
arXiv Detail & Related papers (2024-02-07T07:07:02Z) - LongHealth: A Question Answering Benchmark with Long Clinical Documents [36.05587855811346]
We present the LongHealth benchmark, comprising 20 detailed fictional patient cases across various diseases.
The benchmark challenges LLMs with 400 multiple-choice questions in three categories: information extraction, negation, and sorting.
We evaluated nine open-source LLMs with a minimum of 16,000 tokens and also included OpenAI's proprietary and cost-efficient GPT-3.5 Turbo for comparison.
arXiv Detail & Related papers (2024-01-25T19:57:00Z) - MedAlign: A Clinician-Generated Dataset for Instruction Following with
Electronic Medical Records [60.35217378132709]
Large language models (LLMs) can follow natural language instructions with human-level fluency.
evaluating LLMs on realistic text generation tasks for healthcare remains challenging.
We introduce MedAlign, a benchmark dataset of 983 natural language instructions for EHR data.
arXiv Detail & Related papers (2023-08-27T12:24:39Z) - Medical Misinformation in AI-Assisted Self-Diagnosis: Development of a Method (EvalPrompt) for Analyzing Large Language Models [4.8775268199830935]
This study aims to assess the effectiveness of large language models (LLMs) as a self-diagnostic tool and their role in spreading healthcare misinformation.
We use open-ended questions to mimic real-world self-diagnosis use cases, and perform sentence dropout to mimic realistic self-diagnosis with missing information.
The results highlight the modest capabilities of LLMs, as their responses are often unclear and inaccurate.
arXiv Detail & Related papers (2023-07-10T21:28:26Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
We introduce a model-agnostic pipeline that employs soft prompts to diminish variance while preserving the advantages of prompt-based summarization.
Experimental findings indicate that our method not only bolsters performance but also effectively curbs variance for various language models.
arXiv Detail & Related papers (2023-03-23T04:47:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.