論文の概要: Less Noise, More Signal: DRR for Better Optimizations of SE Tasks
- arxiv url: http://arxiv.org/abs/2503.21086v1
- Date: Thu, 27 Mar 2025 02:02:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:54:01.581779
- Title: Less Noise, More Signal: DRR for Better Optimizations of SE Tasks
- Title(参考訳): 騒音の少ない、信号の少ない:SEタスクの最適化のためのDRR
- Authors: Andre Lustosa, Tim Menzies,
- Abstract要約: 本稿では,軽量アルゴリズムがいつ十分かを予測するための新しい指標であるDRR(Diality Reduction Ratio)を紹介する。
DRRは、DEHBのような高価なメソッドがオーバースキルである"単純な"タスクをピンポイントする。
- 参考スコア(独自算出の注目度): 11.166755101891402
- License:
- Abstract: SE analytics problems do not always need complex AI. Better and faster solutions can sometimes be obtained by matching the complexity of the problem to the complexity of the solution. This paper introduces the Dimensionality Reduction Ratio (DRR), a new metric for predicting when lightweight algorithms suffice. Analyzing SE optimization problems from software configuration to process decisions and open-source project health we show that DRR pinpoints "simple" tasks where costly methods like DEHB (a state-of-the-art evolutionary optimizer) are overkill. For high-DRR problems, simpler methods can be just as effective and run two orders of magnitude faster.
- Abstract(参考訳): SE分析の問題は必ずしも複雑なAIを必要とするとは限らない。
より高速な解は、問題の複雑さと解の複雑さをマッチングすることによって得られることがある。
本稿では,軽量アルゴリズムがいつ十分かを予測するための新しい指標であるDRR(Diality Reduction Ratio)を紹介する。
ソフトウェア構成からプロセス決定、そしてオープンソースプロジェクトの健全性まで、SE最適化の問題を分析することで、DRRはDEHB(最先端の進化最適化ツール)のようなコストのかかるメソッドがオーバースキルである"シンプルな"タスクを指摘します。
高DRR問題に対して、より単純な手法は、同様に効果的であり、桁違いに高速に実行することができる。
関連論文リスト
- Quality-Diversity Algorithms Can Provably Be Helpful for Optimization [24.694984679399315]
QD(Quality-Diversity)アルゴリズムは、ハイパフォーマンスだが多様なソリューションのセットを見つけることを目的としている。
本稿では,厳密な実行時間解析によってQDアルゴリズムの最適化能力に光を当てようとしている。
論文 参考訳(メタデータ) (2024-01-19T07:40:24Z) - Accelerated Gradient Algorithms with Adaptive Subspace Search for
Instance-Faster Optimization [6.896308995955336]
グラディエントベースのミニマックス最適アルゴリズムは、継続的最適化と機械学習の開発を促進する。
本稿では,勾配に基づくアルゴリズムの設計と解析を行う新しい手法を機械学習に直接応用する。
論文 参考訳(メタデータ) (2023-12-06T01:16:10Z) - CORE: Common Random Reconstruction for Distributed Optimization with
Provable Low Communication Complexity [110.50364486645852]
コミュニケーションの複雑さは、トレーニングをスピードアップし、マシン番号をスケールアップする上で、大きなボトルネックになっています。
本稿では,機械間で送信される情報を圧縮するための共通Om REOmを提案する。
論文 参考訳(メタデータ) (2023-09-23T08:45:27Z) - Learning for Robust Combinatorial Optimization: Algorithm and
Application [26.990988571097827]
最適化学習(L2O)は、ニューラルネットワークの強い予測力を活用することにより、最適化問題を解決するための有望なアプローチとして登場した。
本稿では,不確実な状況下で頑健な解を迅速に出力するLRCOという新しい学習ベース最適化を提案する。
その結果、LRCOは、非常に少ない複雑さで、最悪のケースコストとランタイムを大幅に削減できることがわかった。
論文 参考訳(メタデータ) (2021-12-20T07:58:50Z) - Neural Stochastic Dual Dynamic Programming [99.80617899593526]
我々は、問題インスタンスを断片的線形値関数にマッピングすることを学ぶトレーニング可能なニューラルモデルを導入する。
$nu$-SDDPは、ソリューションの品質を犠牲にすることなく、問題解決コストを大幅に削減できる。
論文 参考訳(メタデータ) (2021-12-01T22:55:23Z) - Enhanced Bilevel Optimization via Bregman Distance [104.96004056928474]
本稿では,Bregman Bregman関数に基づく二段階最適化手法を提案する。
また,分散還元法によるSBiO-BreD法(ASBiO-BreD)の高速化版も提案する。
論文 参考訳(メタデータ) (2021-07-26T16:18:43Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
本稿では、強化学習(RL)と従来の運用研究(OR)アルゴリズムを組み合わせた2段階のフレームワークを開発する。
スケジューリング問題は,有限マルコフ決定過程 (MDP) と混合整数計画過程 (mixed-integer programming process) の2段階で解決される。
その結果,本アルゴリズムは,アジャイルな地球観測衛星スケジューリング問題に対して,安定かつ効率的に十分なスケジューリング計画を得ることができた。
論文 参考訳(メタデータ) (2021-03-10T03:16:12Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - Towards Solving Large-scale Expensive Optimization Problems Efficiently
Using Coordinate Descent Algorithm [3.1600708674008393]
計算予算が限られているLSEGO問題に対処するために,修正された座標 Descent アルゴリズム (MCD) を提案する。
提案アルゴリズムは,関心領域の探索と,指数速度で半分に折り畳むことで検索空間の縮小という,2つの主要なステップの恩恵を受ける。
提案アルゴリズムは,次元1000の20個のベンチマーク関数上でのデルタグルーピングと協調的共進化との比較を行った。
論文 参考訳(メタデータ) (2020-03-07T22:48:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。