論文の概要: Interpretable Cross-Sphere Multiscale Deep Learning Predicts ENSO Skilfully Beyond 2 Years
- arxiv url: http://arxiv.org/abs/2503.21211v1
- Date: Thu, 27 Mar 2025 06:55:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:51:07.410536
- Title: Interpretable Cross-Sphere Multiscale Deep Learning Predicts ENSO Skilfully Beyond 2 Years
- Title(参考訳): 解釈可能な球面多次元深層学習予測法 : ENSOの2年以上の速さ
- Authors: Rixu Hao, Yuxin Zhao, Shaoqing Zhang, Guihua Wang, Xiong Deng,
- Abstract要約: PTSTnetは24ヶ月を超えるリードタイムで最先端のベンチマークを著しく上回り、解釈可能な予測を生成する。
私たちの成功は、革新的なニューラルオーシャンモデリングに関する解釈可能な洞察において、大きな一歩を踏み出します。
- 参考スコア(独自算出の注目度): 4.591672124307768
- License:
- Abstract: El Ni\~no-Southern Oscillation (ENSO) exerts global climate and societal impacts, but real-time prediction with lead times beyond one year remains challenging. Dynamical models suffer from large biases and uncertainties, while deep learning struggles with interpretability and multi-scale dynamics. Here, we introduce PTSTnet, an interpretable model that unifies dynamical processes and cross-scale spatiotemporal learning in an innovative neural-network framework with physics-encoding learning. PTSTnet produces interpretable predictions significantly outperforming state-of-the-art benchmarks with lead times beyond 24 months, providing physical insights into error propagation in ocean-atmosphere interactions. PTSTnet learns feature representations with physical consistency from sparse data to tackle inherent multi-scale and multi-physics challenges underlying ocean-atmosphere processes, thereby inherently enhancing long-term prediction skill. Our successful realizations mark substantial steps forward in interpretable insights into innovative neural ocean modelling.
- Abstract(参考訳): El Ni\~no-Southern Oscillation (ENSO)は、地球規模の気候と社会に影響を及ぼすが、1年以上のリードタイムによるリアルタイム予測は依然として困難である。
動的モデルは大きなバイアスと不確実性に悩まされ、ディープラーニングは解釈可能性とマルチスケールのダイナミクスに苦しむ。
本稿では、物理符号化学習を伴う革新的ニューラルネットワークフレームワークにおいて、動的プロセスと大規模時空間学習を統一する解釈可能なモデルPTSTnetを紹介する。
PTSTnetは24ヶ月を超えるリードタイムで最先端のベンチマークを著しく上回り、海洋と大気の相互作用におけるエラーの伝播に関する物理的洞察を提供する。
PTSTnetは、スパースデータから物理的に整合性のある特徴表現を学習し、海洋-大気プロセスの根底にある固有のマルチスケールおよびマルチフィジカルな課題に対処し、それにより本質的に長期予測スキルを向上させる。
私たちの成功は、革新的なニューラル・オーシャン・モデリングに対する解釈可能な洞察において、大きな一歩を踏み出します。
関連論文リスト
- Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
本稿では,保護インフォームドGNN(CiGNN)について紹介する。
このネットワークは、保守的かつ非保守的な情報が、潜時的行進戦略によって多次元空間を通過する対称性による一般的な対称性保存則に従うように設計されている。
結果は,CiGNNが顕著なベースライン精度と一般化性を示し,様々な時間的ダイナミクスの予測のための学習に容易に適用可能であることを示した。
論文 参考訳(メタデータ) (2024-12-30T13:55:59Z) - Enhanced Spatiotemporal Prediction Using Physical-guided And Frequency-enhanced Recurrent Neural Networks [17.91230192726962]
本稿では,時空間力学を推定する物理誘導型ニューラルネットワークを提案する。
また、物理状態をより正確にモデル化するための物理制約付き適応二階ルンゲ・クッタ法を提案する。
我々のモデルは最先端の手法より優れ、より少ないパラメータ数でデータセットで最高の性能を発揮する。
論文 参考訳(メタデータ) (2024-05-23T12:39:49Z) - Towards Spatio-temporal Sea Surface Temperature Forecasting via Static
and Dynamic Learnable Personalized Graph Convolution Network [9.189893653029076]
本稿では,静的で動的に学習可能なグラフ畳み込みネットワーク(SD-LPGC)を提案する。
具体的には、SST信号に隠された安定な長期的および短期的な進化パターンをモデル化するために、2つのグラフ学習層が構築される。
そして、学習可能なパーソナライズされた畳み込み層が、この情報を融合するように設計されている。
論文 参考訳(メタデータ) (2023-04-12T14:35:38Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Multi-scale Feature Learning Dynamics: Insights for Double Descent [71.91871020059857]
一般化誤差の「二重降下」現象について検討する。
二重降下は、異なるスケールで学習される異なる特徴に起因する可能性がある。
論文 参考訳(メタデータ) (2021-12-06T18:17:08Z) - Can neural networks predict dynamics they have never seen? [0.4588028371034407]
ニューラルネットワークは、広範囲の複雑なタスクで驚くほど成功したことが証明されている。
彼らの成功の1つは、適切なトレーニングデータセットが与えられた将来のダイナミクスを予測するスキルである。
これまでの研究では、リカレントニューラルネットワークのサブセットであるEcho State Networks(ESNs)が、リアプノフ時間よりも長くカオスシステムを予測できることが示されている。
この研究は、ESNがトレーニングセットに含まれるあらゆる行動と質的に異なる動的挙動を予測できることを著しく示している。
論文 参考訳(メタデータ) (2021-11-12T15:49:34Z) - Kinematically consistent recurrent neural networks for learning inverse
problems in wave propagation [0.0]
そこで我々は,新しい運動論的に整合した物理に基づく機械学習モデルを提案する。
特に,波動伝搬における逆問題について物理的に解釈可能な学習を試みる。
控えめなトレーニングデータであっても、このキネマティック一貫性のあるネットワークは、通常のLSTM予測の誤り規範である$L_infty$を、それぞれ約45%と55%削減することができる。
論文 参考訳(メタデータ) (2021-10-08T05:51:32Z) - Physics-Coupled Spatio-Temporal Active Learning for Dynamical Systems [15.923190628643681]
主な課題の1つは、認識されたデータストリームを生成する根本原因を推測することである。
機械学習ベースの予測モデルの成功は、モデルトレーニングに大量の注釈付きデータを必要とする。
提案するST-PCNNは, 実世界のデータセットと実世界のデータセットの両方において, 極めて少ないインスタンスで最適精度に収束することを示した。
論文 参考訳(メタデータ) (2021-08-11T18:05:55Z) - Causal Navigation by Continuous-time Neural Networks [108.84958284162857]
本研究では,連続時間ニューラルネットワークを用いた因果表現学習のための理論的,実験的枠組みを提案する。
本手法は,ドローンの視覚制御学習の文脈において,一連の複雑なタスクにおいて評価する。
論文 参考訳(メタデータ) (2021-06-15T17:45:32Z) - On Long-Tailed Phenomena in Neural Machine Translation [50.65273145888896]
最先端のニューラルネットワーク翻訳(NMT)モデルは、低周波トークンの生成に苦労する。
条件付きテキスト生成における構造的依存関係にモデルトレーニングを適応させるために,新たな損失関数である反焦点損失を提案する。
提案手法は,複数の機械翻訳(MT)データセットに対して有効であり,クロスエントロピーよりも顕著に向上することを示す。
論文 参考訳(メタデータ) (2020-10-10T07:00:57Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。