An Introduction to Quantum Computing for Statisticians
- URL: http://arxiv.org/abs/2112.06587v1
- Date: Mon, 13 Dec 2021 12:08:28 GMT
- Title: An Introduction to Quantum Computing for Statisticians
- Authors: Anna Lopatnikova, Minh-Ngoc Tran
- Abstract summary: Quantum computing has the potential to revolutionise and change the way we live and understand the world.
This review aims to provide an accessible introduction to quantum computing with a focus on applications in statistics and data analysis.
- Score: 2.3757641219977392
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing has the potential to revolutionise and change the way we
live and understand the world. This review aims to provide an accessible
introduction to quantum computing with a focus on applications in statistics
and data analysis. We start with an introduction to the basic concepts
necessary to understand quantum computing and the differences between quantum
and classical computing. We describe the core quantum subroutines that serve as
the building blocks of quantum algorithms. We then review a range of quantum
algorithms expected to deliver a computational advantage in statistics and
machine learning. We highlight the challenges and opportunities in applying
quantum computing to problems in statistics and discuss potential future
research directions.
Related papers
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning.
This paper introduces quantum computing for the machine learning paradigm, where variational quantum circuits are used to develop QML architectures.
arXiv Detail & Related papers (2024-11-14T12:27:50Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Review of Distributed Quantum Computing. From single QPU to High Performance Quantum Computing [2.2989970407820484]
distributed quantum computing aims to boost the computational power of current quantum systems.
From quantum communication protocols to entanglement-based distributed algorithms, each aspect contributes to the mosaic of distributed quantum computing.
Our objective is to provide an exhaustive overview for experienced researchers and field newcomers.
arXiv Detail & Related papers (2024-04-01T17:38:18Z) - Quantum computing through the lens of control: A tutorial introduction [0.7179506962081081]
This paper provides a tutorial introduction to quantum computing from the perspective of control theory.
The tutorial only requires basic knowledge of linear algebra and, in particular, no prior exposure to quantum physics.
arXiv Detail & Related papers (2023-10-19T08:25:50Z) - Quantum computing: principles and applications [3.717431207294639]
We introduce the basic principles of quantum computing and the multilayer architecture for a quantum computer.
Based on a mature experimental platform, the Nuclear Magnetic Resonance (NMR) platform, we introduce the basic steps to experimentally implement quantum computing.
arXiv Detail & Related papers (2023-10-13T20:12:28Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - From Quantum Graph Computing to Quantum Graph Learning: A Survey [86.8206129053725]
We first elaborate the correlations between quantum mechanics and graph theory to show that quantum computers are able to generate useful solutions.
For its practicability and wide-applicability, we give a brief review of typical graph learning techniques.
We give a snapshot of quantum graph learning where expectations serve as a catalyst for subsequent research.
arXiv Detail & Related papers (2022-02-19T02:56:47Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Quantum Computation [0.0]
We will discuss and summarized the core principles and practical application areas of quantum computation.
The mapping of computation onto the behavior of physical systems is a historical challenge.
We will evaluate the essential technology required for quantum computers to be able to function correctly.
arXiv Detail & Related papers (2020-06-04T11:57:18Z) - Quantum algorithms for quantum chemistry and quantum materials science [2.867517731896504]
We briefly describe central problems in chemistry and materials science, in areas of electronic structure, quantum statistical mechanics, and quantum dynamics, that are of potential interest for solution on a quantum computer.
We take a detailed snapshot of current progress in quantum algorithms for ground-state, dynamics, and thermal state simulation, and analyze their strengths and weaknesses for future developments.
arXiv Detail & Related papers (2020-01-10T22:49:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.