論文の概要: HyperGraphRAG: Retrieval-Augmented Generation with Hypergraph-Structured Knowledge Representation
- arxiv url: http://arxiv.org/abs/2503.21322v1
- Date: Thu, 27 Mar 2025 10:01:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:53:09.062969
- Title: HyperGraphRAG: Retrieval-Augmented Generation with Hypergraph-Structured Knowledge Representation
- Title(参考訳): HyperGraphRAG:ハイパーグラフ構造化知識表現を用いた検索拡張生成
- Authors: Haoran Luo, Haihong E, Guanting Chen, Yandan Zheng, Xiaobao Wu, Yikai Guo, Qika Lin, Yu Feng, Zemin Kuang, Meina Song, Yifan Zhu, Luu Anh Tuan,
- Abstract要約: ハイパーエッジによるn-aryリレーショナル事実を表現するハイパーグラフベースRAG法であるHyperGraphRAGを提案する。
ハイパーグラフを検索・生成するために,ハイパーグラフ構築手法,ハイパーグラフ検索戦略,ハイパーグラフ誘導生成機構を備えた完全パイプラインを導入する。
医学、農業、コンピュータ科学、法学での実験では、HyperGraphRAGは標準的なRAGとGraphRAGを精度と生成品質で上回っている。
- 参考スコア(独自算出の注目度): 21.291102413159752
- License:
- Abstract: While standard Retrieval-Augmented Generation (RAG) based on chunks, GraphRAG structures knowledge as graphs to leverage the relations among entities. However, previous GraphRAG methods are limited by binary relations: one edge in the graph only connects two entities, which cannot well model the n-ary relations among more than two entities that widely exist in reality. To address this limitation, we propose HyperGraphRAG, a novel hypergraph-based RAG method that represents n-ary relational facts via hyperedges, modeling the complicated n-ary relations in the real world. To retrieve and generate over hypergraphs, we introduce a complete pipeline with a hypergraph construction method, a hypergraph retrieval strategy, and a hypergraph-guided generation mechanism. Experiments across medicine, agriculture, computer science, and law demonstrate that HyperGraphRAG outperforms standard RAG and GraphRAG in accuracy and generation quality.
- Abstract(参考訳): チャンクに基づく標準的な検索-拡張生成(RAG)に対して、GraphRAGは、エンティティ間の関係を活用するために、知識をグラフとして構成する。
しかし、従来のGraphRAG法は二項関係によって制限されている:グラフの一方の辺は2つの実体のみを結び、現実に広く存在する2つ以上の実体の間のn-ary関係をうまくモデル化することはできない。
この制限に対処するために,ハイパーグラフに基づく新たなRAG法であるHyperGraphRAGを提案する。
ハイパーグラフを検索・生成するために,ハイパーグラフ構築手法,ハイパーグラフ検索戦略,ハイパーグラフ誘導生成機構を備えた完全パイプラインを導入する。
医学、農業、コンピュータ科学、法学での実験では、HyperGraphRAGは標準的なRAGとGraphRAGを精度と生成品質で上回っている。
関連論文リスト
- Retrieval-Augmented Generation with Graphs (GraphRAG) [84.29507404866257]
Retrieval-augmented Generation (RAG) は、追加情報を取得することによって下流タスクの実行を向上させる強力な技術である。
グラフは、その固有の「エッジで接続されたノード」の性質により、巨大な異種情報と関係情報を符号化する。
従来のRAGとは異なり、多種多様な形式とドメイン固有の関係知識のようなグラフ構造化データのユニークさは、異なるドメインでGraphRAGを設計する際、ユニークで重要な課題を生じさせる。
論文 参考訳(メタデータ) (2024-12-31T06:59:35Z) - HC-GLAD: Dual Hyperbolic Contrastive Learning for Unsupervised Graph-Level Anomaly Detection [32.607141662986635]
非教師付きグラフレベル異常検出(HC-GLAD、略して)のための新しい双曲双曲双曲型コントラスト学習法を提案する。
高次ノード群情報を利用するために、事前に設計された金モチーフに基づいてハイパーグラフを構築し、その後、ハイパーグラフ畳み込みを行う。
実世界のグラフの階層性を維持するため、この領域に双曲幾何学を導入し、双曲型モデルを用いて双曲型空間におけるグラフと双曲型埋め込み学習を行う。
論文 参考訳(メタデータ) (2024-07-02T08:38:32Z) - Hypergraph-enhanced Dual Semi-supervised Graph Classification [14.339207883093204]
半教師付きグラフ分類のためのハイパーグラフ拡張DuALフレームワークHEALを提案する。
ノード間の高次関係をよりよく探求するために,複雑なノード依存を適応的に学習するハイパーグラフ構造を設計する。
学習したハイパーグラフに基づいて,ハイパーエッジ間の相互作用を捉える線グラフを導入する。
論文 参考訳(メタデータ) (2024-05-08T02:44:13Z) - Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
我々は新しいハイパーグラフ学習フレームワークHyperGraph Transformer(HyperGT)を提案する。
HyperGTはTransformerベースのニューラルネットワークアーキテクチャを使用して、すべてのノードとハイパーエッジのグローバル相関を効果的に検討する。
局所接続パターンを保ちながら、グローバルな相互作用を効果的に組み込むことで、包括的なハイパーグラフ表現学習を実現する。
論文 参考訳(メタデータ) (2023-12-18T17:50:52Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
パラメータ化されたハイパーグラフ正規化エネルギー関数の表現型族を示す。
次に、これらのエネルギーの最小化がノード埋め込みとして効果的に機能することを実証する。
提案した双レベルハイパーグラフ最適化と既存のGNNアーキテクチャを共通的に用いている。
論文 参考訳(メタデータ) (2023-06-16T04:40:59Z) - Hybrid Graph: A Unified Graph Representation with Datasets and
Benchmarks for Complex Graphs [27.24150788635981]
ハイブリッドグラフの概念を導入し、ハイブリッドグラフベンチマーク(HGB)を紹介する。
HGBには、生物学、ソーシャルメディア、eコマースなど、さまざまな領域にわたる23の現実世界のハイブリッドグラフデータセットが含まれている。
HGB上でグラフニューラルネットワーク(GNN)のトレーニングと評価を容易にするための評価フレームワークと支援フレームワークを提供する。
論文 参考訳(メタデータ) (2023-06-08T11:15:34Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Hypergraph Convolutional Networks via Equivalency between Hypergraphs
and Undirected Graphs [59.71134113268709]
本稿では,EDVWおよびEIVWハイパーグラフを処理可能な一般学習フレームワークであるGeneral Hypergraph Spectral Convolution(GHSC)を提案する。
本稿では,提案するフレームワークが最先端の性能を達成できることを示す。
ソーシャルネットワーク分析,視覚的客観的分類,タンパク質学習など,様々な分野の実験により,提案手法が最先端の性能を達成できることが実証された。
論文 参考訳(メタデータ) (2022-03-31T10:46:47Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNN) は、グラフ構造化データに保存された高次関係をモデル化する可能性を示した。
我々はHypERgrAph Laplacian aDaptor(HERALD)と呼ばれる適応的なハイパーグラフ構造を構築するための最初の学習ベース手法を提案する。
HERALDは、ハイパーノードとハイパーエッジの隣接関係をエンドツーエンドで適応的に最適化し、タスク認識ハイパーグラフを学習する。
論文 参考訳(メタデータ) (2021-06-12T02:07:07Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNN) は、グラフ構造化データに保存された高次関係をモデル化する可能性を示した。
我々はHypERgrAph Laplacian aDaptor(HERALD)と呼ばれる適応的なハイパーグラフ構造を構築するための最初の学習ベース手法を提案する。
HERALDは、ハイパーノードとハイパーエッジの隣接関係をエンドツーエンドで適応的に最適化し、タスク認識ハイパーグラフを学習する。
論文 参考訳(メタデータ) (2021-06-10T12:37:55Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。