論文の概要: ProHOC: Probabilistic Hierarchical Out-of-Distribution Classification via Multi-Depth Networks
- arxiv url: http://arxiv.org/abs/2503.21397v1
- Date: Thu, 27 Mar 2025 11:39:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:55:02.137374
- Title: ProHOC: Probabilistic Hierarchical Out-of-Distribution Classification via Multi-Depth Networks
- Title(参考訳): ProHOC:マルチディープスネットワークによる確率的階層的アウト・オブ・ディストリビューション分類
- Authors: Erik Wallin, Fredrik Kahl, Lars Hammarstrand,
- Abstract要約: ディープラーニングにおけるアウト・オブ・ディストリビューション(OOD)検出は、伝統的にバイナリタスクとしてフレーム化されてきた。
クラス階層におけるOODサンプルの検出と分類を行うフレームワークを提案する。
- 参考スコア(独自算出の注目度): 10.894582817549042
- License:
- Abstract: Out-of-distribution (OOD) detection in deep learning has traditionally been framed as a binary task, where samples are either classified as belonging to the known classes or marked as OOD, with little attention given to the semantic relationships between OOD samples and the in-distribution (ID) classes. We propose a framework for detecting and classifying OOD samples in a given class hierarchy. Specifically, we aim to predict OOD data to their correct internal nodes of the class hierarchy, whereas the known ID classes should be predicted as their corresponding leaf nodes. Our approach leverages the class hierarchy to create a probabilistic model and we implement this model by using networks trained for ID classification at multiple hierarchy depths. We conduct experiments on three datasets with predefined class hierarchies and show the effectiveness of our method. Our code is available at https://github.com/walline/prohoc.
- Abstract(参考訳): ディープラーニングにおけるアウト・オブ・ディストリビューション(OOD)検出は、伝統的に、既知のクラスに属するか、OODとしてマークされたサンプルに分類されるバイナリタスクであり、OODサンプルとイン・ディストリビューション(ID)クラス間の意味的関係にはほとんど注意が払われていない。
クラス階層におけるOODサンプルの検出と分類を行うフレームワークを提案する。
具体的には、OODデータをクラス階層の正しい内部ノードに予測することを目的としており、既知のIDクラスは対応するリーフノードとして予測すべきである。
提案手法は,クラス階層を利用して確率モデルを作成し,複数の階層深度でID分類のために訓練されたネットワークを用いて実装する。
事前に定義されたクラス階層を持つ3つのデータセット上で実験を行い、本手法の有効性を示す。
私たちのコードはhttps://github.com/walline/prohoc.comで公開されています。
関連論文リスト
- FlowCon: Out-of-Distribution Detection using Flow-Based Contrastive Learning [0.0]
我々は新しい密度に基づくOOD検出技術であるtextitFlowConを紹介する。
我々の主な革新は、正規化フローの特性と教師付きコントラスト学習を効率的に組み合わせることである。
経験的評価は、一般的な視覚データセットにまたがる手法の性能向上を示す。
論文 参考訳(メタデータ) (2024-07-03T20:33:56Z) - Envisioning Outlier Exposure by Large Language Models for Out-of-Distribution Detection [71.93411099797308]
オープンワールドシナリオに機械学習モデルをデプロイする場合、アウト・オブ・ディストリビューション(OOD)サンプルは不可欠である。
本稿では,大規模言語モデル(LLM)の専門知識と推論能力を活用して,この制約に対処することを提案する。
EOEは、遠、近、きめ細かいOOD検出など、さまざまなタスクに一般化することができる。
EOEは様々なOODタスクで最先端のパフォーマンスを実現し、ImageNet-1Kデータセットに効果的にスケールできる。
論文 参考訳(メタデータ) (2024-06-02T17:09:48Z) - Out-of-Distribution Detection Using Peer-Class Generated by Large Language Model [0.0]
アウト・オブ・ディストリビューション(OOD)検出は、マシンラーニングモデルの信頼性とセキュリティを確保するための重要なタスクである。
本稿では,ODPCと呼ばれる新しい手法を提案し,大規模言語モデルを用いてOODピア・セマンティクスのクラスを生成する。
5つのベンチマークデータセットの実験により,提案手法は最先端の結果が得られることが示された。
論文 参考訳(メタデータ) (2024-03-20T06:04:05Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
本稿では,長い尾を持つOOD検出の課題に対処する。
主な困難は、尾クラスに属するサンプルとOODデータを区別することである。
本稿では,(1)複数の禁制クラスを導入して分布内クラス空間を拡大すること,(2)コンテキストリッチなOODデータに画像をオーバーレイすることでコンテキスト限定のテールクラスを拡大すること,の2つの簡単な考え方を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:47:13Z) - Inspecting class hierarchies in classification-based metric learning
models [0.0]
我々は、ベンチマークと実世界のデータセット上で、いくつかのトレーニングオプションを備えたソフトマックス分類器と3つのメトリック学習モデルを訓練する。
我々は,学習したクラスの代表者や階層的インフォームドのパフォーマンス,すなわち分類性能とメートル法学習性能を事前に定義された階層構造を考慮し,階層的推論性能を評価する。
論文 参考訳(メタデータ) (2023-01-26T12:40:12Z) - Semantic Guided Level-Category Hybrid Prediction Network for
Hierarchical Image Classification [8.456482280676884]
階層分類(HC)は、各オブジェクトに階層構造にまとめられた複数のラベルを割り当てる。
本稿では,そのレベルとカテゴリの予測をエンドツーエンドで共同で行うことのできる,セマンティックガイド付き階層型ハイブリッド予測ネットワーク(SGLCHPN)を提案する。
論文 参考訳(メタデータ) (2022-11-22T13:49:10Z) - A Top-down Supervised Learning Approach to Hierarchical Multi-label
Classification in Networks [0.21485350418225244]
本稿では,階層型マルチラベル分類(HMC)に対する一般的な予測モデルを提案する。
クラスごとの局所分類器を構築することで教師あり学習により階層的マルチラベル分類に対処するトップダウン分類アプローチに基づいている。
本モデルでは, イネOryza sativa Japonicaの遺伝子機能の予測について事例研究を行った。
論文 参考訳(メタデータ) (2022-03-23T17:29:17Z) - Trash to Treasure: Harvesting OOD Data with Cross-Modal Matching for
Open-Set Semi-Supervised Learning [101.28281124670647]
オープンセット半教師付き学習(Open-set SSL)では、ラベルなしデータにOOD(Out-of-distribution)サンプルを含む、難しいが実用的なシナリオを調査する。
我々は、OODデータの存在を効果的に活用し、特徴学習を増強する新しいトレーニングメカニズムを提案する。
我々のアプローチは、オープンセットSSLのパフォーマンスを大幅に向上させ、最先端技術よりも大きなマージンで性能を向上します。
論文 参考訳(メタデータ) (2021-08-12T09:14:44Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
セグメンテーションにおけるアウト・オブ・ディストリビューション(OOD)オブジェクトの検出に取り組む。
私たちの主な貢献は、ObsNetと呼ばれる新しいOOD検出アーキテクチャであり、ローカル・アタック(LAA)に基づく専用トレーニングスキームと関連付けられています。
3つの異なるデータセットの文献の最近の10つの手法と比較して,速度と精度の両面で最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-03T17:09:56Z) - Making CNNs Interpretable by Building Dynamic Sequential Decision
Forests with Top-down Hierarchy Learning [62.82046926149371]
本稿では,CNN(Convlutional Neural Networks)を解釈可能なモデル転送方式を提案する。
我々は、CNNの上に微分可能な意思決定林を構築することで、これを実現する。
DDSDF(Dep Dynamic Sequential Decision Forest)と命名する。
論文 参考訳(メタデータ) (2021-06-05T07:41:18Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。