Device Interoperability for Learned Image Compression with Weights and
Activations Quantization
- URL: http://arxiv.org/abs/2212.01330v1
- Date: Fri, 2 Dec 2022 17:45:29 GMT
- Title: Device Interoperability for Learned Image Compression with Weights and
Activations Quantization
- Authors: Esin Koyuncu, Timofey Solovyev, Elena Alshina and Andr\'e Kaup
- Abstract summary: We present a method to solve the device interoperability problem of a state-of-the-art image compression network.
We suggest a simple method which can ensure cross-platform encoding and decoding, and can be implemented quickly.
- Score: 1.373801677008598
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning-based image compression has improved to a level where it can
outperform traditional image codecs such as HEVC and VVC in terms of coding
performance. In addition to good compression performance, device
interoperability is essential for a compression codec to be deployed, i.e.,
encoding and decoding on different CPUs or GPUs should be error-free and with
negligible performance reduction. In this paper, we present a method to solve
the device interoperability problem of a state-of-the-art image compression
network. We implement quantization to entropy networks which output entropy
parameters. We suggest a simple method which can ensure cross-platform encoding
and decoding, and can be implemented quickly with minor performance deviation,
of 0.3% BD-rate, from floating point model results.
Related papers
- Accelerating Learned Video Compression via Low-Resolution Representation Learning [18.399027308582596]
We introduce an efficiency-optimized framework for learned video compression that focuses on low-resolution representation learning.
Our method achieves performance levels on par with the low-decay P configuration of the H.266 reference software VTM.
arXiv Detail & Related papers (2024-07-23T12:02:57Z) - MISC: Ultra-low Bitrate Image Semantic Compression Driven by Large Multimodal Model [78.4051835615796]
This paper proposes a method called Multimodal Image Semantic Compression.
It consists of an LMM encoder for extracting the semantic information of the image, a map encoder to locate the region corresponding to the semantic, an image encoder generates an extremely compressed bitstream, and a decoder reconstructs the image based on the above information.
It can achieve optimal consistency and perception results while saving perceptual 50%, which has strong potential applications in the next generation of storage and communication.
arXiv Detail & Related papers (2024-02-26T17:11:11Z) - End-to-End Learnable Multi-Scale Feature Compression for VCM [8.037759667748768]
We propose a novel multi-scale feature compression method that enables the end-to-end optimization on the extracted features and the design of lightweight encoders.
Our model outperforms previous approaches by at least 52% BD-rate reduction and has $times5$ to $times27$ times less encoding time for object detection.
arXiv Detail & Related papers (2023-06-29T04:05:13Z) - Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image
Compression [85.93207826513192]
We propose a unified and powerful deep lossy plus residual (DLPR) coding framework for both lossless and near-lossless image compression.
We solve the joint lossy and residual compression problem in the approach of VAEs.
In the near-lossless mode, we quantize the original residuals to satisfy a given $ell_infty$ error bound.
arXiv Detail & Related papers (2022-09-11T12:11:56Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Enhanced Invertible Encoding for Learned Image Compression [40.21904131503064]
In this paper, we propose an enhanced Invertible.
Network with invertible neural networks (INNs) to largely mitigate the information loss problem for better compression.
Experimental results on the Kodak, CLIC, and Tecnick datasets show that our method outperforms the existing learned image compression methods.
arXiv Detail & Related papers (2021-08-08T17:32:10Z) - Enhanced Standard Compatible Image Compression Framework based on
Auxiliary Codec Networks [8.440333621142226]
We propose a novel standard compatible image compression framework based on Auxiliary Codec Networks (ACNs)
ACNs are designed to imitate image degradation operations of the existing, which delivers more accurate gradients to the compact representation network.
We demonstrate that our proposed framework based on JPEG and High Efficiency Video Coding (HEVC) standard substantially outperforms existing image compression algorithms in a standard compatible manner.
arXiv Detail & Related papers (2020-09-30T15:42:06Z) - Modeling Lost Information in Lossy Image Compression [72.69327382643549]
Lossy image compression is one of the most commonly used operators for digital images.
We propose a novel invertible framework called Invertible Lossy Compression (ILC) to largely mitigate the information loss problem.
arXiv Detail & Related papers (2020-06-22T04:04:56Z) - Content Adaptive and Error Propagation Aware Deep Video Compression [110.31693187153084]
We propose a content adaptive and error propagation aware video compression system.
Our method employs a joint training strategy by considering the compression performance of multiple consecutive frames instead of a single frame.
Instead of using the hand-crafted coding modes in the traditional compression systems, we design an online encoder updating scheme in our system.
arXiv Detail & Related papers (2020-03-25T09:04:24Z) - Learning Better Lossless Compression Using Lossy Compression [100.50156325096611]
We leverage the powerful lossy image compression algorithm BPG to build a lossless image compression system.
We model the distribution of the residual with a convolutional neural network-based probabilistic model that is conditioned on the BPG reconstruction.
Finally, the image is stored using the concatenation of the bitstreams produced by BPG and the learned residual coder.
arXiv Detail & Related papers (2020-03-23T11:21:52Z) - A Unified End-to-End Framework for Efficient Deep Image Compression [35.156677716140635]
We propose a unified framework called Efficient Deep Image Compression (EDIC) based on three new technologies.
Specifically, we design an auto-encoder style network for learning based image compression.
Our EDIC method can also be readily incorporated with the Deep Video Compression (DVC) framework to further improve the video compression performance.
arXiv Detail & Related papers (2020-02-09T14:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.