Microdosing: Knowledge Distillation for GAN based Compression
- URL: http://arxiv.org/abs/2201.02624v1
- Date: Fri, 7 Jan 2022 14:27:16 GMT
- Title: Microdosing: Knowledge Distillation for GAN based Compression
- Authors: Leonhard Helminger, Roberto Azevedo, Abdelaziz Djelouah, Markus Gross,
Christopher Schroers
- Abstract summary: We show how to leverage knowledge distillation to obtain equally capable image decoders at a fraction of the original number of parameters.
This allows us to reduce the model size by a factor of 20 and to achieve 50% reduction in decoding time.
- Score: 18.140328230701233
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, significant progress has been made in learned image and video
compression. In particular the usage of Generative Adversarial Networks has
lead to impressive results in the low bit rate regime. However, the model size
remains an important issue in current state-of-the-art proposals and existing
solutions require significant computation effort on the decoding side. This
limits their usage in realistic scenarios and the extension to video
compression. In this paper, we demonstrate how to leverage knowledge
distillation to obtain equally capable image decoders at a fraction of the
original number of parameters. We investigate several aspects of our solution
including sequence specialization with side information for image coding.
Finally, we also show how to transfer the obtained benefits into the setting of
video compression. Overall, this allows us to reduce the model size by a factor
of 20 and to achieve 50% reduction in decoding time.
Related papers
- Learned Compression for Images and Point Clouds [1.7404865362620803]
This thesis provides three primary contributions to this new field of learned compression.
First, we present an efficient low-complexity entropy model that dynamically adapts the encoding distribution to a specific input by compressing and transmitting the encoding distribution itself as side information.
Secondly, we propose a novel lightweight low-complexity point cloud that is highly specialized for classification, attaining significant reductions in compared to non-specialized codecs.
arXiv Detail & Related papers (2024-09-12T19:57:44Z) - Accelerating Learned Video Compression via Low-Resolution Representation Learning [18.399027308582596]
We introduce an efficiency-optimized framework for learned video compression that focuses on low-resolution representation learning.
Our method achieves performance levels on par with the low-decay P configuration of the H.266 reference software VTM.
arXiv Detail & Related papers (2024-07-23T12:02:57Z) - MISC: Ultra-low Bitrate Image Semantic Compression Driven by Large Multimodal Model [78.4051835615796]
This paper proposes a method called Multimodal Image Semantic Compression.
It consists of an LMM encoder for extracting the semantic information of the image, a map encoder to locate the region corresponding to the semantic, an image encoder generates an extremely compressed bitstream, and a decoder reconstructs the image based on the above information.
It can achieve optimal consistency and perception results while saving perceptual 50%, which has strong potential applications in the next generation of storage and communication.
arXiv Detail & Related papers (2024-02-26T17:11:11Z) - End-to-End Learnable Multi-Scale Feature Compression for VCM [8.037759667748768]
We propose a novel multi-scale feature compression method that enables the end-to-end optimization on the extracted features and the design of lightweight encoders.
Our model outperforms previous approaches by at least 52% BD-rate reduction and has $times5$ to $times27$ times less encoding time for object detection.
arXiv Detail & Related papers (2023-06-29T04:05:13Z) - Exploring Long- and Short-Range Temporal Information for Learned Video
Compression [54.91301930491466]
We focus on exploiting the unique characteristics of video content and exploring temporal information to enhance compression performance.
For long-range temporal information exploitation, we propose temporal prior that can update continuously within the group of pictures (GOP) during inference.
In that case temporal prior contains valuable temporal information of all decoded images within the current GOP.
In detail, we design a hierarchical structure to achieve multi-scale compensation.
arXiv Detail & Related papers (2022-08-07T15:57:18Z) - Leveraging Bitstream Metadata for Fast, Accurate, Generalized Compressed
Video Quality Enhancement [74.1052624663082]
We develop a deep learning architecture capable of restoring detail to compressed videos.
We show that this improves restoration accuracy compared to prior compression correction methods.
We condition our model on quantization data which is readily available in the bitstream.
arXiv Detail & Related papers (2022-01-31T18:56:04Z) - Enhanced Invertible Encoding for Learned Image Compression [40.21904131503064]
In this paper, we propose an enhanced Invertible.
Network with invertible neural networks (INNs) to largely mitigate the information loss problem for better compression.
Experimental results on the Kodak, CLIC, and Tecnick datasets show that our method outperforms the existing learned image compression methods.
arXiv Detail & Related papers (2021-08-08T17:32:10Z) - Conditional Entropy Coding for Efficient Video Compression [82.35389813794372]
We propose a very simple and efficient video compression framework that only focuses on modeling the conditional entropy between frames.
We first show that a simple architecture modeling the entropy between the image latent codes is as competitive as other neural video compression works and video codecs.
We then propose a novel internal learning extension on top of this architecture that brings an additional 10% savings without trading off decoding speed.
arXiv Detail & Related papers (2020-08-20T20:01:59Z) - Modeling Lost Information in Lossy Image Compression [72.69327382643549]
Lossy image compression is one of the most commonly used operators for digital images.
We propose a novel invertible framework called Invertible Lossy Compression (ILC) to largely mitigate the information loss problem.
arXiv Detail & Related papers (2020-06-22T04:04:56Z) - Content Adaptive and Error Propagation Aware Deep Video Compression [110.31693187153084]
We propose a content adaptive and error propagation aware video compression system.
Our method employs a joint training strategy by considering the compression performance of multiple consecutive frames instead of a single frame.
Instead of using the hand-crafted coding modes in the traditional compression systems, we design an online encoder updating scheme in our system.
arXiv Detail & Related papers (2020-03-25T09:04:24Z) - A Unified End-to-End Framework for Efficient Deep Image Compression [35.156677716140635]
We propose a unified framework called Efficient Deep Image Compression (EDIC) based on three new technologies.
Specifically, we design an auto-encoder style network for learning based image compression.
Our EDIC method can also be readily incorporated with the Deep Video Compression (DVC) framework to further improve the video compression performance.
arXiv Detail & Related papers (2020-02-09T14:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.