The MVTec AD 2 Dataset: Advanced Scenarios for Unsupervised Anomaly Detection
- URL: http://arxiv.org/abs/2503.21622v1
- Date: Thu, 27 Mar 2025 15:41:46 GMT
- Title: The MVTec AD 2 Dataset: Advanced Scenarios for Unsupervised Anomaly Detection
- Authors: Lars Heckler-Kram, Jan-Hendrik Neudeck, Ulla Scheler, Rebecca König, Carsten Steger,
- Abstract summary: We present MVTec AD 2, a collection of eight anomaly detection scenarios with more than 8000 high-resolution images.<n>It comprises challenging and highly relevant industrial inspection use cases that have not been considered in previous datasets.<n>Our dataset provides test scenarios with lighting condition changes to assess the robustness of methods under real-world distribution shifts.
- Score: 3.9682699334026563
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years, performance on existing anomaly detection benchmarks like MVTec AD and VisA has started to saturate in terms of segmentation AU-PRO, with state-of-the-art models often competing in the range of less than one percentage point. This lack of discriminatory power prevents a meaningful comparison of models and thus hinders progress of the field, especially when considering the inherent stochastic nature of machine learning results. We present MVTec AD 2, a collection of eight anomaly detection scenarios with more than 8000 high-resolution images. It comprises challenging and highly relevant industrial inspection use cases that have not been considered in previous datasets, including transparent and overlapping objects, dark-field and back light illumination, objects with high variance in the normal data, and extremely small defects. We provide comprehensive evaluations of state-of-the-art methods and show that their performance remains below 60% average AU-PRO. Additionally, our dataset provides test scenarios with lighting condition changes to assess the robustness of methods under real-world distribution shifts. We host a publicly accessible evaluation server that holds the pixel-precise ground truth of the test set (https://benchmark.mvtec.com/). All image data is available at https://www.mvtec.com/company/research/datasets/mvtec-ad-2.
Related papers
- A Dataset for Semantic Segmentation in the Presence of Unknowns [49.795683850385956]
Existing datasets allow evaluation of only knowns or unknowns - but not both.
We propose a novel anomaly segmentation dataset, ISSU, that features a diverse set of anomaly inputs from cluttered real-world environments.
The dataset is twice larger than existing anomaly segmentation datasets.
arXiv Detail & Related papers (2025-03-28T10:31:01Z) - CableInspect-AD: An Expert-Annotated Anomaly Detection Dataset [14.246172794156987]
$textitCableInspect-AD$ is a high-quality dataset created and annotated by domain experts from Hydro-Qu'ebec, a Canadian public utility.
This dataset includes high-resolution images with challenging real-world anomalies, covering defects with varying severity levels.
We present a comprehensive evaluation protocol based on cross-validation to assess models' performances.
arXiv Detail & Related papers (2024-09-30T14:50:13Z) - AnomalySD: Few-Shot Multi-Class Anomaly Detection with Stable Diffusion Model [7.942354689705658]
Anomaly detection is a critical task in industrial manufacturing, aiming to identify defective parts of products.
Most industrial anomaly detection methods assume the availability of sufficient normal data for training.
We propose a few-shot multi-class anomaly detection framework that adopts Stable Diffusion model.
arXiv Detail & Related papers (2024-08-04T08:33:44Z) - Bayesian Detector Combination for Object Detection with Crowdsourced Annotations [49.43709660948812]
Acquiring fine-grained object detection annotations in unconstrained images is time-consuming, expensive, and prone to noise.
We propose a novel Bayesian Detector Combination (BDC) framework to more effectively train object detectors with noisy crowdsourced annotations.
BDC is model-agnostic, requires no prior knowledge of the annotators' skill level, and seamlessly integrates with existing object detection models.
arXiv Detail & Related papers (2024-07-10T18:00:54Z) - Domain-independent detection of known anomalies [1.3232004853011963]
anomaly detection approaches can be trained with sparse nominal data, whereas domain generalization approaches enable detecting objects in previously unseen domains.
We present a modification of the well-established MVTec AD dataset by generating three new datasets.
Overall, SEMLP achieves the best performance with an average image-level AUROC of 87.2 % vs. 80.4 % by MIRO.
arXiv Detail & Related papers (2024-07-03T08:35:52Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Learning Feature Inversion for Multi-class Anomaly Detection under General-purpose COCO-AD Benchmark [101.23684938489413]
Anomaly detection (AD) is often focused on detecting anomalies for industrial quality inspection and medical lesion examination.
This work first constructs a large-scale and general-purpose COCO-AD dataset by extending COCO to the AD field.
Inspired by the metrics in the segmentation field, we propose several more practical threshold-dependent AD-specific metrics.
arXiv Detail & Related papers (2024-04-16T17:38:26Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - AUPIMO: Redefining Visual Anomaly Detection Benchmarks with High Speed and Low Tolerance [0.562479170374811]
Per-IMage Overlap (PIMO) is a novel metric that addresses the shortcomings of AUROC and AUPRO.
measuring recall per image simplifies computation and is more robust to noisy annotations.
Our experiments demonstrate that PIMO offers practical advantages and nuanced performance insights.
arXiv Detail & Related papers (2024-01-03T21:24:44Z) - Industrial Anomaly Detection and Localization Using Weakly-Supervised Residual Transformers [44.344548601242444]
We introduce a novel framework, Weakly-supervised RESidual Transformer (WeakREST), to achieve high anomaly detection accuracy.<n>We reformulate the pixel-wise anomaly localization task into a block-wise classification problem.<n>We develop a novel ResMixMatch algorithm, capable of handling the interplay between weak labels and residual-based representations.
arXiv Detail & Related papers (2023-06-06T08:19:30Z) - A Multi-purpose Real Haze Benchmark with Quantifiable Haze Levels and
Ground Truth [61.90504318229845]
This paper introduces the first paired real image benchmark dataset with hazy and haze-free images, and in-situ haze density measurements.
This dataset was produced in a controlled environment with professional smoke generating machines that covered the entire scene.
A subset of this dataset has been used for the Object Detection in Haze Track of CVPR UG2 2022 challenge.
arXiv Detail & Related papers (2022-06-13T19:14:06Z) - NVAE-GAN Based Approach for Unsupervised Time Series Anomaly Detection [19.726089445453734]
Time series anomaly detection is a common but challenging task in many industries.
It is difficult to detect anomalies in time series with high accuracy, due to noisy data collected from real world.
We propose our anomaly detection model: Time series to Image VAE (T2IVAE)
arXiv Detail & Related papers (2021-01-08T08:35:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.