Accelerating HEC-RAS: A Recurrent Neural Operator for Rapid River Forecasting
- URL: http://arxiv.org/abs/2507.15614v1
- Date: Mon, 21 Jul 2025 13:38:54 GMT
- Title: Accelerating HEC-RAS: A Recurrent Neural Operator for Rapid River Forecasting
- Authors: Edward Holmberg, Pujan Pokhrel, Maximilian Zoch, Elias Ioup, Ken Pathak, Steven Sloan, Kendall Niles, Jay Ratcliff, Maik Flanagin, Christian Guetl, Julian Simeonov, Mahdi Abdelguerfi,
- Abstract summary: This paper introduces a deep learning surrogate that treats HEC-RAS not as a solver but as a data-generation engine.<n>Trained on 67 reaches of the Mississippi River Basin, the surrogate was evaluated on a year-long, unseen hold-out simulation.<n>Results show the model achieves a strong predictive accuracy, with a median absolute stage error of 0.31 feet.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-based solvers like HEC-RAS provide high-fidelity river forecasts but are too computationally intensive for on-the-fly decision-making during flood events. The central challenge is to accelerate these simulations without sacrificing accuracy. This paper introduces a deep learning surrogate that treats HEC-RAS not as a solver but as a data-generation engine. We propose a hybrid, auto-regressive architecture that combines a Gated Recurrent Unit (GRU) to capture short-term temporal dynamics with a Geometry-Aware Fourier Neural Operator (Geo-FNO) to model long-range spatial dependencies along a river reach. The model learns underlying physics implicitly from a minimal eight-channel feature vector encoding dynamic state, static geometry, and boundary forcings extracted directly from native HEC-RAS files. Trained on 67 reaches of the Mississippi River Basin, the surrogate was evaluated on a year-long, unseen hold-out simulation. Results show the model achieves a strong predictive accuracy, with a median absolute stage error of 0.31 feet. Critically, for a full 67-reach ensemble forecast, our surrogate reduces the required wall-clock time from 139 minutes to 40 minutes, a speedup of nearly 3.5 times over the traditional solver. The success of this data-driven approach demonstrates that robust feature engineering can produce a viable, high-speed replacement for conventional hydraulic models, improving the computational feasibility of large-scale ensemble flood forecasting.
Related papers
- Integrating Newton's Laws with deep learning for enhanced physics-informed compound flood modelling [0.8999666725996978]
Coastal communities increasingly face compound floods, where multiple drivers like storm surge, high tide, heavy rainfall, and river discharge occur together or in sequence.<n>Traditional hydrodynamic models can provide accurate physics-based simulations but require substantial computational resources for real-time applications or risk assessments.<n>This study addresses these challenges by developing ALPINE, a physics-informed neural network framework to enforce complete shallow water dynamics in compound flood modeling.
arXiv Detail & Related papers (2025-07-20T16:06:10Z) - FourCastNet 3: A geometric approach to probabilistic machine-learning weather forecasting at scale [91.84761739154366]
FourCastNet 3 advances global weather modeling by implementing a scalable, geometric machine learning (ML) approach to probabilistic ensemble forecasting.<n>FourCastNet 3 delivers forecasting accuracy that surpasses leading conventional ensemble models and rivals the best diffusion-based methods.<n>Its computational efficiency, medium-range probabilistic skill, spectral fidelity, and rollout stability at subseasonal timescales make it a strong candidate for improving meteorological forecasting and early warning systems through large ensemble predictions.
arXiv Detail & Related papers (2025-07-16T11:22:18Z) - Advanced long-term earth system forecasting by learning the small-scale nature [74.19833913539053]
We present Triton, an AI framework designed to address this fundamental challenge.<n>Inspired by increasing grids to explicitly resolve small scales in numerical models, Triton employs a hierarchical architecture processing information across multiple resolutions to mitigate spectral bias.<n>We demonstrate Triton's superior performance on challenging forecast tasks, achieving stable year-long global temperature forecasts, skillful Kuroshio eddy predictions till 120 days, and high-fidelity turbulence simulations.
arXiv Detail & Related papers (2025-05-26T02:49:00Z) - Physics-Informed Neural Network Surrogate Models for River Stage Prediction [0.0]
PINNs can successfully approximate HEC-RAS numerical solutions when trained on a single river.<n>We evaluate the model's performance in terms of accuracy and computational speed.
arXiv Detail & Related papers (2025-03-21T04:48:22Z) - GeoFUSE: A High-Efficiency Surrogate Model for Seawater Intrusion Prediction and Uncertainty Reduction [0.10923877073891446]
Seawater intrusion into coastal aquifers poses a significant threat to groundwater resources.
We develop GeoFUSE, a novel deep-learning-based surrogate framework.
We apply GeoFUSE to a 2D cross-section of the Beaver Creek tidal stream-floodplain system in Washington State.
arXiv Detail & Related papers (2024-10-26T08:10:32Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
This paper proposes a physics-AI hybrid model (i.e., WeatherGFT) which generalizes weather forecasts to finer-grained temporal scales beyond training dataset.<n>Specifically, we employ a carefully designed PDE kernel to simulate physical evolution on a small time scale.<n>We also introduce a lead time-aware training framework to promote the generalization of the model at different lead times.
arXiv Detail & Related papers (2024-05-22T16:21:02Z) - Application of Long-Short Term Memory and Convolutional Neural Networks for Real-Time Bridge Scour Prediction [0.0]
We exploit the power of deep learning algorithms to forecast scour depth variations around bridge piers based on historical sensor monitoring data.
We investigated the performance of Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) models for real-time scour forecasting.
arXiv Detail & Related papers (2024-04-25T12:04:36Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
Flood inundation forecast provides critical information for emergency planning before and during flood events.
High-resolution hydrodynamic modeling has become more accessible in recent years, however, predicting flood extents at the street and building levels in real-time is still computationally demanding.
We present a hybrid process-based and data-driven machine learning (ML) approach for flood extent and inundation depth prediction.
arXiv Detail & Related papers (2023-07-29T22:49:50Z) - Probabilistic forecasting for geosteering in fluvial successions using a
generative adversarial network [0.0]
Fast updates based on real-time data are essential when drilling in complex reservoirs with high uncertainties in pre-drill models.
We propose a generative adversarial deep neural network (GAN) trained to reproduce geologically consistent 2D sections of fluvial successions.
In our example, the method reduces uncertainty and correctly predicts most major geological features up to 500 meters ahead of drill-bit.
arXiv Detail & Related papers (2022-07-04T12:52:38Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.