論文の概要: Enhancing Repository-Level Software Repair via Repository-Aware Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2503.21710v1
- Date: Thu, 27 Mar 2025 17:21:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:53:58.000792
- Title: Enhancing Repository-Level Software Repair via Repository-Aware Knowledge Graphs
- Title(参考訳): リポジトリ対応知識グラフによるレポジトリレベルソフトウェア修復の促進
- Authors: Boyang Yang, Haoye Tian, Jiadong Ren, Shunfu Jin, Yang Liu, Feng Liu, Bach Le,
- Abstract要約: リポジトリレベルのソフトウェア修復は、問題記述とコードパッチの間のセマンティックギャップを埋める際の課題に直面します。
既存のアプローチは、主に大きな言語モデル(LLM)に依存しており、意味的曖昧さ、構造的コンテキストの理解の制限、推論能力の不足に悩まされている。
本稿では,リポジトリのアーティファクト(課題とプル要求)とエンティティを正確にリンクする新しいリポジトリ対応知識グラフ(KG)を提案する。
- 参考スコア(独自算出の注目度): 8.467850621024672
- License:
- Abstract: Repository-level software repair faces challenges in bridging semantic gaps between issue descriptions and code patches. Existing approaches, which mostly depend on large language models (LLMs), suffer from semantic ambiguities, limited structural context understanding, and insufficient reasoning capability. To address these limitations, we propose KGCompass with two innovations: (1) a novel repository-aware knowledge graph (KG) that accurately links repository artifacts (issues and pull requests) and codebase entities (files, classes, and functions), allowing us to effectively narrow down the vast search space to only 20 most relevant functions with accurate candidate bug locations and contextual information, and (2) a path-guided repair mechanism that leverages KG-mined entity path, tracing through which allows us to augment LLMs with relevant contextual information to generate precise patches along with their explanations. Experimental results in the SWE-Bench-Lite demonstrate that KGCompass achieves state-of-the-art repair performance (45.67%) and function-level localization accuracy (51.33%) across open-source approaches, costing only $0.20 per repair. Our analysis reveals that among successfully localized bugs, 69.7% require multi-hop traversals through the knowledge graph, without which LLM-based approaches struggle to accurately locate bugs. The knowledge graph built in KGCompass is language agnostic and can be incrementally updated, making it a practical solution for real-world development environments.
- Abstract(参考訳): リポジトリレベルのソフトウェア修復は、問題記述とコードパッチの間のセマンティックギャップを埋める際の課題に直面します。
既存のアプローチは、主に大きな言語モデル(LLM)に依存しており、意味的曖昧さ、構造的コンテキストの理解の制限、推論能力の不足に悩まされている。
これらの制限に対処するため,(1) リポジトリのアーティファクト(発行とプル要求)とコードベースのエンティティ(ファイル,クラス,関数)を正確にリンクする新しいリポジトリ対応知識グラフ(KG)を提案する。
SWE-Bench-Liteの実験結果によると、KGCompassは最先端の修理性能(45.67%)とオープンソースアプローチでの関数レベルのローカライゼーション精度(51.33%)を達成し、1回の修理に0.20ドルしかかからない。
解析の結果, 69.7%は知識グラフを通したマルチホップトラバーサルが必要であり, LLMベースのアプローチではバグの正確な検出に苦慮していることがわかった。
KGCompassで構築された知識グラフは言語に依存しないため、インクリメンタルに更新できるため、実際の開発環境において実用的なソリューションとなっている。
関連論文リスト
- ADKGD: Anomaly Detection in Knowledge Graphs with Dual-Channel Training [38.3788247358102]
本稿では、二重チャネル学習(ADKGD)を用いた知識グラフにおける異常検出アルゴリズムを提案する。
両チャネル間のスコアリング関数の精度を向上させるために,KL(Kullback-leibler)-loss成分を導入する。
実験の結果,ADKGDは最先端の異常検出アルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2025-01-13T06:22:52Z) - SWE-Fixer: Training Open-Source LLMs for Effective and Efficient GitHub Issue Resolution [56.9361004704428]
大規模言語モデル(LLM)は、様々な複雑なタスクにまたがる顕著な習熟度を示している。
SWE-Fixerは、GitHubの問題を効果的かつ効率的に解決するために設計された、新しいオープンソースフレームワークである。
我々は,SWE-Bench LiteとVerifiedベンチマークに対するアプローチを評価し,オープンソースモデル間の最先端性能を実現する。
論文 参考訳(メタデータ) (2025-01-09T07:54:24Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
本稿では,KG(Amar)フレームワーク上での適応型マルチアスペクト検索手法を提案する。
この方法は、エンティティ、リレーション、サブグラフを含む知識を検索し、検索した各テキストを即時埋め込みに変換する。
提案手法は2つの共通データセットに対して最先端の性能を達成した。
論文 参考訳(メタデータ) (2024-12-24T16:38:04Z) - Synergizing LLMs and Knowledge Graphs: A Novel Approach to Software Repository-Related Question Answering [3.076436880934678]
ソフトウェアリポジトリには、開発プロセスに関する洞察を得るための貴重な情報が含まれている。
これらのレポジトリデータから洞察を抽出するのには時間がかかり、技術的な専門知識が必要です。
本研究では,レポジトリ関連の質問に知識グラフを付加することにより,LLMベースのチャットボットの精度を向上させることを目的とする。
論文 参考訳(メタデータ) (2024-12-05T02:18:03Z) - SuperCoder2.0: Technical Report on Exploring the feasibility of LLMs as Autonomous Programmer [0.0]
SuperCoder2.0は、人工知能によるソフトウェア開発を強化するために設計された高度な自律システムである。
システムは、AIネイティブな開発アプローチとインテリジェントエージェントを組み合わせて、完全に自律的なコーディングを可能にする。
論文 参考訳(メタデータ) (2024-09-17T13:44:42Z) - Knowledge Graph-Enhanced Large Language Models via Path Selection [58.228392005755026]
大規模言語モデル(LLM)は、様々な現実世界のアプリケーションで前例のない性能を示している。
LLMは実際に不正確な出力、すなわち幻覚の問題を発生させることが知られている。
上記の問題に対処する3段階の原理的フレームワークKELPを提案する。
論文 参考訳(メタデータ) (2024-06-19T21:45:20Z) - Alibaba LingmaAgent: Improving Automated Issue Resolution via Comprehensive Repository Exploration [64.19431011897515]
本稿では,問題解決のためにソフトウェアリポジトリ全体を包括的に理解し,活用するために設計された,新しいソフトウェアエンジニアリング手法であるAlibaba LingmaAgentを提案する。
提案手法では,重要なリポジトリ情報を知識グラフに凝縮し,複雑さを低減し,モンテカルロ木探索に基づく戦略を採用する。
Alibaba Cloudの製品展開と評価において、LingmaAgentは、開発エンジニアが直面した社内問題の16.9%を自動で解決し、手作業による介入で43.3%の問題を解決した。
論文 参考訳(メタデータ) (2024-06-03T15:20:06Z) - Retrieval-Augmented Language Model for Extreme Multi-Label Knowledge Graph Link Prediction [2.6749568255705656]
大規模言語モデル(LLM)における開放的調査のための外挿は2つの重要な問題に遭遇する。
既存の作業は、知識グラフからの情報により、より小さな言語モデルの入力を増大させることによって、この問題に対処しようとするものである。
我々は,モデルが複数の応答で外挿を行うことを可能にするために,新たなタスク,極端なマルチラベルKGリンク予測タスクを提案する。
論文 参考訳(メタデータ) (2024-05-21T10:10:56Z) - KG-RAG: Bridging the Gap Between Knowledge and Creativity [0.0]
大規模言語モデルエージェント(LMA)は、情報幻覚、破滅的な忘れ込み、長いコンテキストの処理における制限といった問題に直面している。
本稿では,LMAの知識能力を高めるため,KG-RAG (Knowledge Graph-Retrieval Augmented Generation)パイプラインを提案する。
ComplexWebQuestionsデータセットに関する予備実験では、幻覚的コンテンツの削減において顕著な改善が示されている。
論文 参考訳(メタデータ) (2024-05-20T14:03:05Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
我々は、知識グラフ(KG)を探索しながら、新しい実写トリプルを生成する、Generate-on-Graph(GoG)と呼ばれる学習自由な手法を提案する。
GoGはIKGQAでLLMをエージェントとKGの両方として扱うThinking-Searching-Generatingフレームワークを通じて推論を行う。
論文 参考訳(メタデータ) (2024-04-23T04:47:22Z) - BertNet: Harvesting Knowledge Graphs with Arbitrary Relations from
Pretrained Language Models [65.51390418485207]
本稿では,事前学習したLMから任意の関係を持つ大規模KGを抽出する手法を提案する。
関係定義の最小限の入力により、アプローチは膨大な実体対空間を効率的に探索し、多様な正確な知識を抽出する。
我々は、異なるLMから400以上の新しい関係を持つKGを収穫するためのアプローチを展開している。
論文 参考訳(メタデータ) (2022-06-28T19:46:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。