GateLens: A Reasoning-Enhanced LLM Agent for Automotive Software Release Analytics
- URL: http://arxiv.org/abs/2503.21735v2
- Date: Fri, 01 Aug 2025 21:33:50 GMT
- Title: GateLens: A Reasoning-Enhanced LLM Agent for Automotive Software Release Analytics
- Authors: Arsham Gholamzadeh Khoee, Shuai Wang, Yinan Yu, Robert Feldt, Dhasarathy Parthasarathy,
- Abstract summary: GateLens is an LLM-based system for analyzing data in the automotive domain.<n>Unlike traditional multi-agent or planning-based systems that can be slow, opaque, and costly to maintain, GateLens emphasizes speed, transparency, and reliability.
- Score: 9.549568621873386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensuring reliable software release decisions is critical in safety-critical domains such as automotive manufacturing. Release validation relies on large tabular datasets, yet manual analysis is slow, costly, and error-prone. While Large Language Models (LLMs) offer promising automation potential, they face challenges in analytical reasoning, structured data handling, and ambiguity resolution. This paper introduces GateLens, an LLM-based system for analyzing tabular data in the automotive domain. GateLens translates natural language queries into Relational Algebra (RA) expressions and generates optimized Python code. Unlike traditional multi-agent or planning-based systems that can be slow, opaque, and costly to maintain, GateLens emphasizes speed, transparency, and reliability. Experimental results show that GateLens outperforms the existing Chain-of-Thought (CoT) + Self-Consistency (SC) based system on real-world datasets, particularly in handling complex and ambiguous queries. Ablation studies confirm the essential role of the RA layer. Industrial deployment shows over 80% reduction in analysis time while maintaining high accuracy across test result interpretation, impact assessment, and release candidate evaluation. GateLens operates effectively in zero-shot settings without requiring few-shot examples or agent orchestration. This work advances deployable LLM system design by identifying key architectural features-intermediate formal representations, execution efficiency, and low configuration overhead-crucial for safety-critical industrial applications.
Related papers
- VerifyLLM: LLM-Based Pre-Execution Task Plan Verification for Robots [44.99833362998488]
We propose an architecture for automatically verifying high-level task plans before their execution in simulator or real-world environments.<n>The module uses the reasoning capabilities of the Large Language Models to evaluate logical coherence and identify potential gaps in the plan.<n>We contribute to improving the reliability and efficiency of task planning and addresses the critical need for robust pre-execution verification in autonomous systems.
arXiv Detail & Related papers (2025-07-07T15:31:36Z) - Feature Engineering for Agents: An Adaptive Cognitive Architecture for Interpretable ML Monitoring [2.1205272468688574]
We propose a cognitive architecture for ML monitoring that applies feature engineering principles to agents based on Large Language Models.<n>Decision Procedure module simulates feature engineering through three key steps: Refactor, Break Down, and Compile.<n> Experiments using multiple LLMs demonstrate the efficacy of our approach, achieving significantly higher accuracy compared to various baselines.
arXiv Detail & Related papers (2025-06-11T13:48:25Z) - Training Language Models to Generate Quality Code with Program Analysis Feedback [66.0854002147103]
Code generation with large language models (LLMs) is increasingly adopted in production but fails to ensure code quality.<n>We propose REAL, a reinforcement learning framework that incentivizes LLMs to generate production-quality code.
arXiv Detail & Related papers (2025-05-28T17:57:47Z) - IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis [60.32962597618861]
IDA-Bench is a novel benchmark evaluating large language models in multi-round interactive scenarios.<n>Agent performance is judged by comparing its final numerical output to the human-derived baseline.<n>Even state-of-the-art coding agents (like Claude-3.7-thinking) succeed on 50% of the tasks, highlighting limitations not evident in single-turn tests.
arXiv Detail & Related papers (2025-05-23T09:37:52Z) - Are You Getting What You Pay For? Auditing Model Substitution in LLM APIs [60.881609323604685]
Large Language Models (LLMs) accessed via black-box APIs introduce a trust challenge.
Users pay for services based on advertised model capabilities.
providers may covertly substitute the specified model with a cheaper, lower-quality alternative to reduce operational costs.
This lack of transparency undermines fairness, erodes trust, and complicates reliable benchmarking.
arXiv Detail & Related papers (2025-04-07T03:57:41Z) - Reasoning with LLMs for Zero-Shot Vulnerability Detection [0.9208007322096533]
We present textbfVulnSage, a comprehensive evaluation framework and a curated dataset from diverse, large-scale open-source system software projects.<n>The framework supports multi-granular analysis across function, file, and inter-function levels.<n>It employs four diverse zero-shot prompt strategies: Baseline, Chain-of-context, Think, and Think & verify.
arXiv Detail & Related papers (2025-03-22T23:59:17Z) - How Robust Are Router-LLMs? Analysis of the Fragility of LLM Routing Capabilities [62.474732677086855]
Large language model (LLM) routing has emerged as a crucial strategy for balancing computational costs with performance.
We propose the DSC benchmark: Diverse, Simple, and Categorized, an evaluation framework that categorizes router performance across a broad spectrum of query types.
arXiv Detail & Related papers (2025-03-20T19:52:30Z) - CASTLE: Benchmarking Dataset for Static Code Analyzers and LLMs towards CWE Detection [2.5228276786940182]
This paper introduces CASTLE, a benchmarking framework for evaluating the vulnerability detection capabilities of different methods.<n>We assess 13 static analysis tools, 10 LLMs, and 2 formal verification tools using a hand-crafted dataset of 250 micro-benchmark programs covering 25 common CWEs.
arXiv Detail & Related papers (2025-03-12T14:30:05Z) - Complex LLM Planning via Automated Heuristics Discovery [48.07520536415374]
We consider enhancing large language models (LLMs) for complex planning tasks.<n>We propose automated inferences discovery (AutoHD), a novel approach that enables LLMs to explicitly generate functions to guide-time search.<n>Our proposed method requires no additional model training or finetuning--and the explicit definition of functions generated by the LLMs provides interpretability and insights into the reasoning process.
arXiv Detail & Related papers (2025-02-26T16:52:31Z) - AIRepr: An Analyst-Inspector Framework for Evaluating Reproducibility of LLMs in Data Science [5.064778712920176]
Large language models (LLMs) are increasingly used to automate data analysis through executable code generation.<n>We present $itAIRepr, an $itA$nalyst - $itI$nspector framework for automatically evaluating and improving the $itRepr$oducibility of LLM-generated data analysis.
arXiv Detail & Related papers (2025-02-23T01:15:50Z) - AutoPT: How Far Are We from the End2End Automated Web Penetration Testing? [54.65079443902714]
We introduce AutoPT, an automated penetration testing agent based on the principle of PSM driven by LLMs.
Our results show that AutoPT outperforms the baseline framework ReAct on the GPT-4o mini model.
arXiv Detail & Related papers (2024-11-02T13:24:30Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.<n>We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.<n>We propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - VulnLLMEval: A Framework for Evaluating Large Language Models in Software Vulnerability Detection and Patching [0.9208007322096533]
Large Language Models (LLMs) have shown promise in tasks like code translation.
This paper introduces VulnLLMEval, a framework designed to assess the performance of LLMs in identifying and patching vulnerabilities in C code.
Our study includes 307 real-world vulnerabilities extracted from the Linux kernel.
arXiv Detail & Related papers (2024-09-16T22:00:20Z) - AIvril: AI-Driven RTL Generation With Verification In-The-Loop [0.7831852829409273]
Large Language Models (LLMs) are computational models capable of performing complex natural language processing tasks.
This paper introduces AIvril, a framework designed to enhance the accuracy and reliability of RTL-aware LLMs.
arXiv Detail & Related papers (2024-09-03T15:07:11Z) - Outside the Comfort Zone: Analysing LLM Capabilities in Software Vulnerability Detection [9.652886240532741]
This paper thoroughly analyses large language models' capabilities in detecting vulnerabilities within source code.
We evaluate the performance of six open-source models that are specifically trained for vulnerability detection against six general-purpose LLMs.
arXiv Detail & Related papers (2024-08-29T10:00:57Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
We introduce a novel approach to anomaly detection in financial data using Large Language Models (LLMs) embeddings.
Our experiments demonstrate that LLMs contribute valuable information to anomaly detection as our models outperform the baselines.
arXiv Detail & Related papers (2024-06-05T20:19:09Z) - AutoAct: Automatic Agent Learning from Scratch for QA via Self-Planning [54.47116888545878]
AutoAct is an automatic agent learning framework for QA.
It does not rely on large-scale annotated data and synthetic planning trajectories from closed-source models.
arXiv Detail & Related papers (2024-01-10T16:57:24Z) - Understanding the Effectiveness of Large Language Models in Detecting Security Vulnerabilities [12.82645410161464]
We evaluate the effectiveness of 16 pre-trained Large Language Models on 5,000 code samples from five diverse security datasets.
Overall, LLMs show modest effectiveness in detecting vulnerabilities, obtaining an average accuracy of 62.8% and F1 score of 0.71 across datasets.
We find that advanced prompting strategies that involve step-by-step analysis significantly improve performance of LLMs on real-world datasets in terms of F1 score (by upto 0.18 on average)
arXiv Detail & Related papers (2023-11-16T13:17:20Z) - Self-Checker: Plug-and-Play Modules for Fact-Checking with Large Language Models [75.75038268227554]
Self-Checker is a framework comprising a set of plug-and-play modules that facilitate fact-checking.
This framework provides a fast and efficient way to construct fact-checking systems in low-resource environments.
arXiv Detail & Related papers (2023-05-24T01:46:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.