論文の概要: Forecasting Volcanic Radiative Power (VPR) at Fuego Volcano Using Bayesian Regularized Neural Network
- arxiv url: http://arxiv.org/abs/2503.21803v1
- Date: Tue, 25 Mar 2025 04:15:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:31:57.064140
- Title: Forecasting Volcanic Radiative Power (VPR) at Fuego Volcano Using Bayesian Regularized Neural Network
- Title(参考訳): ベイジアン正規化ニューラルネットワークを用いた船越火山の火山放射パワー予測
- Authors: Snehamoy Chatterjee, Greg Waite, Sidike Paheding, Luke Bowman,
- Abstract要約: 本研究では,福島火山の過去のデータをもとに,ベイズ正規化ニューラルネットワーク(BRNN)を用いて将来の火山放射力(VPR)の予測を行う。
BRNNは最小平均二乗誤差(1.77E+16)と最高R二乗値0.50)を達成する
発見は、火山活動予測の進展における機械学習モデル、特にBRNNの可能性を強調している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Forecasting volcanic activity is critical for hazard assessment and risk mitigation. Volcanic Radiative Power (VPR), derived from thermal remote sensing data, serves as an essential indicator of volcanic activity. In this study, we employ Bayesian Regularized Neural Networks (BRNN) to predict future VPR values based on historical data from Fuego Volcano, comparing its performance against Scaled Conjugate Gradient (SCG) and Levenberg-Marquardt (LM) models. The results indicate that BRNN outperforms SCG and LM, achieving the lowest mean squared error (1.77E+16) and the highest R-squared value (0.50), demonstrating its superior ability to capture VPR variability while minimizing overfitting. Despite these promising results, challenges remain in improving the model's predictive accuracy. Future research should focus on integrating additional geophysical parameters, such as seismic and gas emission data, to enhance forecasting precision. The findings highlight the potential of machine learning models, particularly BRNN, in advancing volcanic activity forecasting, contributing to more effective early warning systems for volcanic hazards.
- Abstract(参考訳): 火山活動の予測は危険評価とリスク軽減に重要である。
熱リモートセンシングデータから得られた火山放射力(VPR)は火山活動の重要な指標である。
本研究では,Fuego Volcanoの過去のデータに基づいてベイズ正規化ニューラルネットワーク(BRNN)を用いて将来のVPR値を予測し,その性能をスケール共役勾配(SCG)モデルとレバンス・マルカルト(LM)モデルと比較する。
その結果、BRNN は SCG と LM より優れており、平均二乗誤差 (1.77E+16) と R-二乗値 (0.50) が最低であり、オーバーフィッティングを最小化しながら VPR の変動を捉える能力に優れていたことが示唆された。
これらの有望な結果にもかかわらず、モデルの予測精度を改善する上での課題は残る。
今後の研究は、予測精度を高めるために、地震やガス排出データなどの追加の物理パラメータを統合することに集中すべきである。
この発見は、火山活動予測の進展における機械学習モデル、特にBRNNの可能性を浮き彫りにしており、火山の危険に対するより効果的な早期警戒システムに寄与している。
関連論文リスト
- ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Exploring and Analyzing Wildland Fire Data Via Machine Learning
Techniques [0.0]
熱電対温度の10Hz時系列と乱流運動エネルギー(TKE)の相関について検討した。
風速は、ニュージャージー州のサイラス・リトル・エクスペリメント・フォレスト(Silas Little Experimental Forest)の小さな実験用火傷から収集された。
このプロジェクトは、さまざまな機械学習モデルを用いて、TKEを予測する際に高い精度を達成する。
論文 参考訳(メタデータ) (2023-11-09T03:47:49Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Towards Interpretable Solar Flare Prediction with Attention-based Deep
Neural Networks [1.1624569521079424]
太陽フレア予測は宇宙天気予報の中心的な問題である。
我々は、フルディスクのバイナリフレア予測を行うための注意に基づくディープラーニングモデルを開発した。
本モデルでは、フルディスク磁気画像から、アクティブ領域に対応する顕著な特徴を学習することができる。
論文 参考訳(メタデータ) (2023-09-08T19:21:10Z) - Convolutional GRU Network for Seasonal Prediction of the El
Ni\~no-Southern Oscillation [24.35408676030181]
本稿では,エルニーニョ南部振動(ENSO)領域時間列予測問題に対して,畳み込みGated Recurrent Unit (ConvGRU) を改良したネットワークを提案する。
提案するConvGRUネットワークはエンコーダ・デコーダシーケンス・ツー・シーケンス構造を持ち,太平洋地域の歴史的SSTマップを入力として取り込んで,その後数ヶ月間,ENSO領域内で将来のSSTマップを生成する。
その結果, ConvGRU ネットワークは LIM, AF, RNN と比較して Nino 3.4 インデックスの予測可能性を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2023-06-18T00:15:45Z) - Forecast reconciliation for vaccine supply chain optimization [61.13962963550403]
ワクチンサプライチェーン最適化は階層的な時系列予測の恩恵を受けることができる。
異なる階層レベルの予測は、上位レベルの予測が下位レベルの予測の総和と一致しないときに不整合となる。
我々は2010年から2021年にかけてのGSKの販売データを階層的時系列としてモデル化し,ワクチン販売予測問題に取り組む。
論文 参考訳(メタデータ) (2023-05-02T14:34:34Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
本稿では,Dilated Causal Convolutionsに基づくDeepVolモデルを提案する。
実験結果から,提案手法は高頻度データからグローバルな特徴を効果的に学習できることが示唆された。
論文 参考訳(メタデータ) (2022-09-23T16:13:47Z) - Self-supervised Contrastive Learning for Volcanic Unrest Detection [4.152165675786138]
InSAR(Interferometric Synthetic Aperture Radar)データから測定した地盤変形は,火山活動の兆候と考えられる。
近年の研究では, 火山の変形信号の検出にSentinel-1 InSARデータと教師付き深層学習(DL)手法を用いることの可能性が示されている。
本稿では,ラベルのないInSARデータに隠された高品質な視覚表現を学習するために,自己教師付きコントラスト学習を用いることを提案する。
論文 参考訳(メタデータ) (2022-02-08T17:54:51Z) - Improving the Thermal Infrared Monitoring of Volcanoes: A Deep Learning
Approach for Intermittent Image Series [0.0]
提案手法により,最低のRMSE (4.164circ$C, 他の手法:4.217-5.291circ$C) で火山の温度を予測できることを示す。
また, 熱画像から得られた複数の時系列について, 特異火山のデータによるトレーニングの効果について検討した。
この研究は、火山活動予測のためのデータ駆動型ディープラーニングモデルの可能性を強調している。
論文 参考訳(メタデータ) (2021-09-27T02:31:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。