Forecasting Volcanic Radiative Power (VPR) at Fuego Volcano Using Bayesian Regularized Neural Network
- URL: http://arxiv.org/abs/2503.21803v1
- Date: Tue, 25 Mar 2025 04:15:24 GMT
- Title: Forecasting Volcanic Radiative Power (VPR) at Fuego Volcano Using Bayesian Regularized Neural Network
- Authors: Snehamoy Chatterjee, Greg Waite, Sidike Paheding, Luke Bowman,
- Abstract summary: We employ Bayesian Regularized Neural Networks (BRNN) to predict future Volcanic Radiative Power (VPR) values based on historical data from Fuego Volcano.<n>BRNN achieves the lowest mean squared error (1.77E+16) and the highest R-squared value (0.50)<n>Findings highlight the potential of machine learning models, particularly BRNN, in advancing volcanic activity forecasting.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forecasting volcanic activity is critical for hazard assessment and risk mitigation. Volcanic Radiative Power (VPR), derived from thermal remote sensing data, serves as an essential indicator of volcanic activity. In this study, we employ Bayesian Regularized Neural Networks (BRNN) to predict future VPR values based on historical data from Fuego Volcano, comparing its performance against Scaled Conjugate Gradient (SCG) and Levenberg-Marquardt (LM) models. The results indicate that BRNN outperforms SCG and LM, achieving the lowest mean squared error (1.77E+16) and the highest R-squared value (0.50), demonstrating its superior ability to capture VPR variability while minimizing overfitting. Despite these promising results, challenges remain in improving the model's predictive accuracy. Future research should focus on integrating additional geophysical parameters, such as seismic and gas emission data, to enhance forecasting precision. The findings highlight the potential of machine learning models, particularly BRNN, in advancing volcanic activity forecasting, contributing to more effective early warning systems for volcanic hazards.
Related papers
- Wildfire spread forecasting with Deep Learning [1.194799054956877]
We present a deep learning framework for forecasting the extent of burned areas using data available at the time of ignition.<n>We conduct an ablation study examining how the inclusion of pre- and post-ignition data affects model performance benchmarking.<n>Our results indicate that multi-day observational data substantially improve predictive accuracy.
arXiv Detail & Related papers (2025-05-23T07:01:38Z) - A Generative Framework for Causal Estimation via Importance-Weighted Diffusion Distillation [55.53426007439564]
Estimating individualized treatment effects from observational data is a central challenge in causal inference.<n>In inverse probability weighting (IPW) is a well-established solution to this problem, but its integration into modern deep learning frameworks remains limited.<n>We propose Importance-Weighted Diffusion Distillation (IWDD), a novel generative framework that combines the pretraining of diffusion models with importance-weighted score distillation.
arXiv Detail & Related papers (2025-05-16T17:00:52Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Graph Neural Networks for Pressure Estimation in Water Distribution
Systems [44.99833362998488]
Pressure and flow estimation in Water Distribution Networks (WDN) allows water management companies to optimize their control operations.
We combine physics-based modeling and Graph Neural Networks (GNN), a data-driven approach, to address the pressure estimation problem.
Our GNN-based model estimates the pressure of a large-scale WDN in The Netherlands with a MAE of 1.94mH$$O and a MAPE of 7%.
arXiv Detail & Related papers (2023-11-17T15:30:12Z) - Exploring and Analyzing Wildland Fire Data Via Machine Learning
Techniques [0.0]
This research project investigated the correlation between a 10 Hz time series of thermocouple temperatures and turbulent kinetic energy (TKE)
Wind speeds were collected from a small experimental prescribed burn at the Silas Little Experimental Forest in New Jersey, USA.
The project achieves high accuracy in predicting TKE by employing various machine learning models.
arXiv Detail & Related papers (2023-11-09T03:47:49Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Towards Interpretable Solar Flare Prediction with Attention-based Deep
Neural Networks [1.1624569521079424]
Solar flare prediction is a central problem in space weather forecasting.
We developed an attention-based deep learning model to perform full-disk binary flare predictions.
Our model can learn conspicuous features corresponding to active regions from full-disk magnetogram images.
arXiv Detail & Related papers (2023-09-08T19:21:10Z) - Convolutional GRU Network for Seasonal Prediction of the El
Ni\~no-Southern Oscillation [24.35408676030181]
We present a modified Convolutional Gated Recurrent Unit (ConvGRU) network for the El Nino-Southern Oscillation (ENSO) region-temporal sequence prediction problem.
The proposed ConvGRU network, with an encoder-decoder sequence-to-sequence structure, takes historical SST maps of the Pacific region as input and generates future SST maps for subsequent months within the ENSO region.
The results demonstrate that the ConvGRU network significantly improves the predictability of the Nino 3.4 index compared to LIM, AF, and RNN.
arXiv Detail & Related papers (2023-06-18T00:15:45Z) - Forecast reconciliation for vaccine supply chain optimization [61.13962963550403]
Vaccine supply chain optimization can benefit from hierarchical time series forecasting.
Forecasts of different hierarchy levels become incoherent when higher levels do not match the sum of the lower levels forecasts.
We tackle the vaccine sale forecasting problem by modeling sales data from GSK between 2010 and 2021 as a hierarchical time series.
arXiv Detail & Related papers (2023-05-02T14:34:34Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Self-supervised Contrastive Learning for Volcanic Unrest Detection [4.152165675786138]
Ground deformation measured from Interferometric Synthetic Aperture Radar (InSAR) data is considered a sign of volcanic unrest.
Recent studies have shown the potential of using Sentinel-1 InSAR data and supervised deep learning (DL) methods for the detection of volcanic deformation signals.
This letter proposes the use of self-supervised contrastive learning to learn quality visual representations hidden in unlabeled InSAR data.
arXiv Detail & Related papers (2022-02-08T17:54:51Z) - Improving the Thermal Infrared Monitoring of Volcanoes: A Deep Learning
Approach for Intermittent Image Series [0.0]
We show that a proposed architecture can forecast volcanic temperature imagery with the lowest RMSE ($4.164circ$C, other methods: $4.217-5.291circ$C)
We also examined performance on multiple time series derived from the thermal imagery and the effect of training with data from singular volcanoes.
This work highlights the potential of data-driven deep learning models for volcanic unrest forecasting.
arXiv Detail & Related papers (2021-09-27T02:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.