Wildfire spread forecasting with Deep Learning
- URL: http://arxiv.org/abs/2505.17556v1
- Date: Fri, 23 May 2025 07:01:38 GMT
- Title: Wildfire spread forecasting with Deep Learning
- Authors: Nikolaos Anastasiou, Spyros Kondylatos, Ioannis Papoutsis,
- Abstract summary: We present a deep learning framework for forecasting the extent of burned areas using data available at the time of ignition.<n>We conduct an ablation study examining how the inclusion of pre- and post-ignition data affects model performance benchmarking.<n>Our results indicate that multi-day observational data substantially improve predictive accuracy.
- Score: 1.194799054956877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate prediction of wildfire spread is crucial for effective risk management, emergency response, and strategic resource allocation. In this study, we present a deep learning (DL)-based framework for forecasting the final extent of burned areas, using data available at the time of ignition. We leverage a spatio-temporal dataset that covers the Mediterranean region from 2006 to 2022, incorporating remote sensing data, meteorological observations, vegetation maps, land cover classifications, anthropogenic factors, topography data, and thermal anomalies. To evaluate the influence of temporal context, we conduct an ablation study examining how the inclusion of pre- and post-ignition data affects model performance, benchmarking the temporal-aware DL models against a baseline trained exclusively on ignition-day inputs. Our results indicate that multi-day observational data substantially improve predictive accuracy. Particularly, the best-performing model, incorporating a temporal window of four days before to five days after ignition, improves both the F1 score and the Intersection over Union by almost 5% in comparison to the baseline on the test dataset. We publicly release our dataset and models to enhance research into data-driven approaches for wildfire modeling and response.
Related papers
- Weather Prediction Using CNN-LSTM for Time Series Analysis: A Case Study on Delhi Temperature Data [0.0]
This study explores a hybrid CNN-LSTM model to enhance temperature forecasting accuracy for the Delhi region.
We employed both direct and indirect methods, including comprehensive data preprocessing and exploratory analysis, to construct and train our model.
Experimental results indicate that the CNN-LSTM model significantly outperforms traditional forecasting methods in terms of both accuracy and stability.
arXiv Detail & Related papers (2024-09-14T11:06:07Z) - Neural Networks with LSTM and GRU in Modeling Active Fires in the Amazon [0.0]
This study presents a comprehensive methodology for modeling and forecasting the historical time series of active fire spots detected by the AQUA_M-T satellite in the Amazon, Brazil.
The approach employs a mixed Recurrent Neural Network (RNN) model, combining Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to predict the monthly accumulations of daily detected active fire spots.
arXiv Detail & Related papers (2024-09-04T13:11:59Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Multi-time Predictions of Wildfire Grid Map using Remote Sensing Local
Data [0.0]
This paper proposes a distributed learning framework that shares local data collected in ten locations in the western USA throughout local agents.
The proposed model has distinct features that address the characteristic need in prediction evaluations, including dynamic online estimation and time-series modeling.
arXiv Detail & Related papers (2022-09-15T22:34:06Z) - An Empirical Study on Distribution Shift Robustness From the Perspective
of Pre-Training and Data Augmentation [91.62129090006745]
This paper studies the distribution shift problem from the perspective of pre-training and data augmentation.
We provide the first comprehensive empirical study focusing on pre-training and data augmentation.
arXiv Detail & Related papers (2022-05-25T13:04:53Z) - Learning Wildfire Model from Incomplete State Observations [0.0]
We create a dynamic model for future wildfire predictions of five locations within the western United States through a deep neural network.
The proposed model has distinct features that address the characteristic need in prediction evaluations, including dynamic online estimation and time-series modeling.
arXiv Detail & Related papers (2021-11-28T03:21:46Z) - A windowed correlation based feature selection method to improve time
series prediction of dengue fever cases [0.20072624123275526]
Poor performance in prediction can result in places with inadequate data.
New framework is presented for windowing incidence data and computing time-shifted correlation-based metrics.
Recurrent neural network-based prediction models achieve up to 33.6% accuracy improvement on average.
arXiv Detail & Related papers (2021-04-21T00:28:28Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.