CMD-HAR: Cross-Modal Disentanglement for Wearable Human Activity Recognition
- URL: http://arxiv.org/abs/2503.21843v1
- Date: Thu, 27 Mar 2025 15:21:49 GMT
- Title: CMD-HAR: Cross-Modal Disentanglement for Wearable Human Activity Recognition
- Authors: Hanyu Liu, Siyao Li, Ying Yu, Yixuan Jiang, Hang Xiao, Jingxi Long, Haotian Tang,
- Abstract summary: Human Activity Recognition (HAR) is a fundamental technology for numerous human centered - intelligent applications.<n>The aim of this paper is to address issues such as multimodal data mixing, activity disc and complex model deployment in sensor-based human activity.
- Score: 8.323653331043287
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human Activity Recognition (HAR) is a fundamental technology for numerous human - centered intelligent applications. Although deep learning methods have been utilized to accelerate feature extraction, issues such as multimodal data mixing, activity heterogeneity, and complex model deployment remain largely unresolved. The aim of this paper is to address issues such as multimodal data mixing, activity heterogeneity, and complex model deployment in sensor-based human activity recognition. We propose a spatiotemporal attention modal decomposition alignment fusion strategy to tackle the problem of the mixed distribution of sensor data. Key discriminative features of activities are captured through cross-modal spatio-temporal disentangled representation, and gradient modulation is combined to alleviate data heterogeneity. In addition, a wearable deployment simulation system is constructed. We conducted experiments on a large number of public datasets, demonstrating the effectiveness of the model.
Related papers
- C3T: Cross-modal Transfer Through Time for Human Action Recognition [0.8192907805418581]
We formalize and explore an understudied cross-modal transfer setting we term Unsupervised Modality Adaptation (UMA)
We develop three methods to perform UMA: Student-Teacher (ST), Contrastive Alignment (CA), and Cross-modal Transfer Through Time (C3T)
The results indicate C3T is the most robust and highest performing by at least a margin of 8%, and nears the supervised setting performance even in the presence of temporal noise.
arXiv Detail & Related papers (2024-07-23T19:06:44Z) - Test-Time Adaptation for Combating Missing Modalities in Egocentric Videos [92.38662956154256]
Real-world applications often face challenges with incomplete modalities due to privacy concerns, efficiency needs, or hardware issues.<n>We propose a novel approach to address this issue at test time without requiring retraining.<n>MiDl represents the first self-supervised, online solution for handling missing modalities exclusively at test time.
arXiv Detail & Related papers (2024-04-23T16:01:33Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - Distilled Mid-Fusion Transformer Networks for Multi-Modal Human Activity
Recognition [34.424960016807795]
Multi-modal Human Activity Recognition could utilize the complementary information to build models that can generalize well.
Deep learning methods have shown promising results, their potential in extracting salient multi-modal spatial-temporal features has not been fully explored.
A knowledge distillation-based Multi-modal Mid-Fusion approach, DMFT, is proposed to conduct informative feature extraction and fusion to resolve the Multi-modal Human Activity Recognition task efficiently.
arXiv Detail & Related papers (2023-05-05T19:26:06Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - TASKED: Transformer-based Adversarial learning for human activity
recognition using wearable sensors via Self-KnowledgE Distillation [6.458496335718508]
We propose a novel Transformer-based Adversarial learning framework for human activity recognition using wearable sensors via Self-KnowledgE Distillation (TASKED)
In the proposed method, we adopt the teacher-free self-knowledge distillation to improve the stability of the training procedure and the performance of human activity recognition.
arXiv Detail & Related papers (2022-09-14T11:08:48Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
We propose a novel Consistency and Diversity induced human Motion (CDMS) algorithm.
Our model factorizes the source and target data into distinct multi-layer feature spaces.
A multi-mutual learning strategy is carried out to reduce the domain gap between the source and target data.
arXiv Detail & Related papers (2022-02-10T06:23:56Z) - Homogenization of Existing Inertial-Based Datasets to Support Human
Activity Recognition [8.076841611508486]
Several techniques have been proposed to address the problem of recognizing activities of daily living from signals.
Deep learning techniques applied to inertial signals have proven to be effective, achieving significant classification accuracy.
Research in human activity recognition models has been almost totally model-centric.
arXiv Detail & Related papers (2022-01-17T14:29:48Z) - Adversarial Deep Feature Extraction Network for User Independent Human
Activity Recognition [4.988898367111902]
We present an adversarial subject-independent feature extraction method with the maximum mean discrepancy (MMD) regularization for human activity recognition.
We evaluate the method on well-known public data sets showing that it significantly improves user-independent performance and reduces variance in results.
arXiv Detail & Related papers (2021-10-23T07:50:32Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - MARS: Mixed Virtual and Real Wearable Sensors for Human Activity
Recognition with Multi-Domain Deep Learning Model [21.971345137218886]
We propose to build a large database based on virtual IMUs and then address technical issues by introducing a multiple-domain deep learning framework consisting of three technical parts.
In the first part, we propose to learn the single-frame human activity from the noisy IMU data with hybrid convolutional neural networks (CNNs) in the semi-supervised form.
For the second part, the extracted data features are fused according to the principle of uncertainty-aware consistency.
The transfer learning is performed in the last part based on the newly released Archive of Motion Capture as Surface Shapes (AMASS) dataset.
arXiv Detail & Related papers (2020-09-20T10:35:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.