SC-NeRF: NeRF-based Point Cloud Reconstruction using a Stationary Camera for Agricultural Applications
- URL: http://arxiv.org/abs/2503.21958v2
- Date: Tue, 15 Apr 2025 16:57:59 GMT
- Title: SC-NeRF: NeRF-based Point Cloud Reconstruction using a Stationary Camera for Agricultural Applications
- Authors: Kibon Ku, Talukder Z Jubery, Elijah Rodriguez, Aditya Balu, Soumik Sarkar, Adarsh Krishnamurthy, Baskar Ganapathysubramanian,
- Abstract summary: This paper presents a NeRF-based framework for point cloud (PCD) reconstruction.<n>We develop a variant of NeRF-based PCD reconstruction that uses a single stationary camera to capture images as the object rotates on a pedestal.<n>Our findings indicate that high-quality NeRF-based 3D reconstructions are achievable using a stationary camera.
- Score: 10.199205707001436
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper presents a NeRF-based framework for point cloud (PCD) reconstruction, specifically designed for indoor high-throughput plant phenotyping facilities. Traditional NeRF-based reconstruction methods require cameras to move around stationary objects, but this approach is impractical for high-throughput environments where objects are rapidly imaged while moving on conveyors or rotating pedestals. To address this limitation, we develop a variant of NeRF-based PCD reconstruction that uses a single stationary camera to capture images as the object rotates on a pedestal. Our workflow comprises COLMAP-based pose estimation, a straightforward pose transformation to simulate camera movement, and subsequent standard NeRF training. A defined Region of Interest (ROI) excludes irrelevant scene data, enabling the generation of high-resolution point clouds (10M points). Experimental results demonstrate excellent reconstruction fidelity, with precision-recall analyses yielding an F-score close to 100.00 across all evaluated plant objects. Although pose estimation remains computationally intensive with a stationary camera setup, overall training and reconstruction times are competitive, validating the method's feasibility for practical high-throughput indoor phenotyping applications. Our findings indicate that high-quality NeRF-based 3D reconstructions are achievable using a stationary camera, eliminating the need for complex camera motion or costly imaging equipment. This approach is especially beneficial when employing expensive and delicate instruments, such as hyperspectral cameras, for 3D plant phenotyping. Future work will focus on optimizing pose estimation techniques and further streamlining the methodology to facilitate seamless integration into automated, high-throughput 3D phenotyping pipelines.
Related papers
- HORT: Monocular Hand-held Objects Reconstruction with Transformers [61.36376511119355]
Reconstructing hand-held objects in 3D from monocular images is a significant challenge in computer vision.
We propose a transformer-based model to efficiently reconstruct dense 3D point clouds of hand-held objects.
Our method achieves state-of-the-art accuracy with much faster inference speed, while generalizing well to in-the-wild images.
arXiv Detail & Related papers (2025-03-27T09:45:09Z) - FLARE: Feed-forward Geometry, Appearance and Camera Estimation from Uncalibrated Sparse Views [93.6881532277553]
We present FLARE, a feed-forward model designed to infer high-quality camera poses and 3D geometry from uncalibrated sparse-view images.<n>Our solution features a cascaded learning paradigm with camera pose serving as the critical bridge, recognizing its essential role in mapping 3D structures onto 2D image planes.
arXiv Detail & Related papers (2025-02-17T18:54:05Z) - AE-NeRF: Augmenting Event-Based Neural Radiance Fields for Non-ideal Conditions and Larger Scene [31.142207770861457]
We propose AE-NeRF to address the challenges of learning event-based NeRF from non-ideal conditions.<n>Our method achieves a new state-of-the-art in event-based 3D reconstruction.
arXiv Detail & Related papers (2025-01-06T07:00:22Z) - Cameras as Rays: Pose Estimation via Ray Diffusion [54.098613859015856]
Estimating camera poses is a fundamental task for 3D reconstruction and remains challenging given sparsely sampled views.
We propose a distributed representation of camera pose that treats a camera as a bundle of rays.
Our proposed methods, both regression- and diffusion-based, demonstrate state-of-the-art performance on camera pose estimation on CO3D.
arXiv Detail & Related papers (2024-02-22T18:59:56Z) - ReconFusion: 3D Reconstruction with Diffusion Priors [104.73604630145847]
We present ReconFusion to reconstruct real-world scenes using only a few photos.
Our approach leverages a diffusion prior for novel view synthesis, trained on synthetic and multiview datasets.
Our method synthesizes realistic geometry and texture in underconstrained regions while preserving the appearance of observed regions.
arXiv Detail & Related papers (2023-12-05T18:59:58Z) - 3D Reconstruction of Spherical Images based on Incremental Structure
from Motion [2.6432771146480283]
This study investigates the algorithms for the relative orientation using spherical correspondences, absolute orientation using 3D correspondences between scene and spherical points, and the cost functions for BA (bundle adjustment) optimization.
An incremental SfM (Structure from Motion) workflow has been proposed for spherical images using the above-mentioned algorithms.
arXiv Detail & Related papers (2023-06-22T09:49:28Z) - Variable Radiance Field for Real-World Category-Specific Reconstruction from Single Image [25.44715538841181]
Reconstructing category-specific objects using Neural Radiance Field (NeRF) from a single image is a promising yet challenging task.<n>We propose Variable Radiance Field (VRF), a novel framework capable of efficiently reconstructing category-specific objects.<n>VRF achieves state-of-the-art performance in both reconstruction quality and computational efficiency.
arXiv Detail & Related papers (2023-06-08T12:12:02Z) - A Comparative Neural Radiance Field (NeRF) 3D Analysis of Camera Poses
from HoloLens Trajectories and Structure from Motion [0.0]
We present a workflow for high-resolution 3D reconstructions almost directly from HoloLens data using Neural Radiance Fields (NeRFs)
NeRFs are trained using a set of camera poses and associated images as input to estimate density and color values for each position.
Results show that the internal camera poses lead to NeRF convergence with a PSNR of 25,dB with a simple rotation around the x-axis and enable a 3D reconstruction.
arXiv Detail & Related papers (2023-04-20T22:17:28Z) - VMRF: View Matching Neural Radiance Fields [57.93631771072756]
VMRF is an innovative view matching NeRF that enables effective NeRF training without requiring prior knowledge in camera poses or camera pose distributions.
VMRF introduces a view matching scheme, which exploits unbalanced optimal transport to produce a feature transport plan for mapping a rendered image with randomly camera pose to the corresponding real image.
With the feature transport plan as the guidance, a novel pose calibration technique is designed which rectifies the initially randomized camera poses by predicting relative pose between the pair of rendered and real images.
arXiv Detail & Related papers (2022-07-06T12:26:40Z) - Vid2Curve: Simultaneous Camera Motion Estimation and Thin Structure
Reconstruction from an RGB Video [90.93141123721713]
Thin structures, such as wire-frame sculptures, fences, cables, power lines, and tree branches, are common in the real world.
It is extremely challenging to acquire their 3D digital models using traditional image-based or depth-based reconstruction methods because thin structures often lack distinct point features and have severe self-occlusion.
We propose the first approach that simultaneously estimates camera motion and reconstructs the geometry of complex 3D thin structures in high quality from a color video captured by a handheld camera.
arXiv Detail & Related papers (2020-05-07T10:39:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.