論文の概要: The Limits of AI in Financial Services
- arxiv url: http://arxiv.org/abs/2503.22035v1
- Date: Thu, 27 Mar 2025 23:04:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:31:47.442238
- Title: The Limits of AI in Financial Services
- Title(参考訳): 金融サービスにおけるAIの限界
- Authors: Isabella Loaiza, Roberto Rigobon,
- Abstract要約: AIは産業を変革し、仕事のずれや意思決定の信頼性に関する懸念を高めている。
EPOCHフレームワークは、共感、プレゼンス、オピニオン、創造性、希望の5つの不可能な人間の能力を強調している。
課題は、AIの強みを活用しながら、人間の本質的な能力を維持しながら、プロフェッショナルが適応することを保証することだ。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: AI is transforming industries, raising concerns about job displacement and decision making reliability. AI, as a universal approximation function, excels in data driven tasks but struggles with small datasets, subjective probabilities, and contexts requiring human judgment, relationships, and ethics.The EPOCH framework highlights five irreplaceable human capabilities: Empathy, Presence, Opinion, Creativity, and Hope. These attributes are vital in financial services for trust, inclusion, innovation, and consumer experience. Although AI improves efficiency in risk management and compliance, it will not eliminate jobs but redefine them, similar to how ATMs reshaped bank tellers' roles. The challenge is ensuring professionals adapt, leveraging AI's strengths while preserving essential human capabilities.
- Abstract(参考訳): AIは産業を変革し、仕事のずれや意思決定の信頼性に関する懸念を高めている。
AIは、普遍的な近似関数として、データ駆動タスクに優れるが、小さなデータセット、主観的確率、人間の判断、関係、倫理を必要とするコンテキストに苦しむ。
これらの属性は、信頼、包摂、イノベーション、消費者エクスペリエンスのための金融サービスにおいて不可欠である。
AIはリスク管理とコンプライアンスの効率を向上するが、ATMが銀行のテラーの役割を再形成するのと同じように、ジョブを排除するのではなく、それらを再定義する。
課題は、プロフェッショナルがAIの強みを活用して、不可欠な人間の能力を維持することにある。
関連論文リスト
- Agentic AI: Autonomy, Accountability, and the Algorithmic Society [0.2209921757303168]
エージェント人工知能(AI)は、自律的に長期的な目標を追求し、意思決定を行い、複雑なマルチターンを実行することができる。
この指導的役割から積極的執行課題への移行は、法的、経済的、創造的な枠組みを確立した。
我々は,創造性と知的財産,法的・倫理的考察,競争効果の3つの分野における課題を探求する。
論文 参考訳(メタデータ) (2025-02-01T03:14:59Z) - Complement or substitute? How AI increases the demand for human skills [0.0]
本稿では、人工知能(AI)が人間の労働を補うか、あるいは補うかを検討する。
2018年から2023年にかけて、米国から1200万件のオンライン求人情報を集めている。
結果として、AIに焦点を当てた役割は、レジリエンス、アジリティ、分析的思考といったスキルを必要とする可能性がほぼ2倍であることが示された。
論文 参考訳(メタデータ) (2024-12-27T17:26:30Z) - Follow the money: a startup-based measure of AI exposure across occupations, industries and regions [0.0]
既存のAIの職業曝露対策は、技術的実現可能性に基づいて人間の労働を代用または補うAIの理論的可能性に焦点を当てている。
我々は,O*NETとスタートアップが開発したAIアプリケーションからの職業的記述に基づく,新たな指標であるAISE(AI Startup Exposure)指標を紹介する。
我々の発見は、AIの採用は、AIアプリケーションの技術的実現可能性と同様に、社会的要因によって徐々に形成されていくことを示唆している。
論文 参考訳(メタデータ) (2024-12-06T10:25:05Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - Trustworthy and Responsible AI for Human-Centric Autonomous Decision-Making Systems [2.444630714797783]
我々は、AIバイアス、定義、検出と緩和の方法、およびバイアスを評価するメトリクスの複雑さをレビューし、議論する。
また、人間中心の意思決定のさまざまな領域におけるAIの信頼性と広範な適用に関して、オープンな課題についても論じる。
論文 参考訳(メタデータ) (2024-08-28T06:04:25Z) - AI Potentiality and Awareness: A Position Paper from the Perspective of
Human-AI Teaming in Cybersecurity [18.324118502535775]
我々は、人間とAIのコラボレーションはサイバーセキュリティに価値があると論じている。
私たちは、AIの計算能力と人間の専門知識を取り入れたバランスのとれたアプローチの重要性を強調します。
論文 参考訳(メタデータ) (2023-09-28T01:20:44Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。