論文の概要: A Proposal for Networks Capable of Continual Learning
- arxiv url: http://arxiv.org/abs/2503.22068v1
- Date: Fri, 28 Mar 2025 01:23:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:32:17.496114
- Title: A Proposal for Networks Capable of Continual Learning
- Title(参考訳): 連続学習が可能なネットワークの提案
- Authors: Zeki Doruk Erden, Boi Faltings,
- Abstract要約: システム全体の連続学習において重要な特性であるパラメータ更新後の過去の応答を計算ユニットが保持する能力について分析する。
そこで本研究では,本質的な応答保存のための代替手法であるModelleyenを提案する。
我々は、単純な環境の力学をモデル化する実験と、MNISTを用いて、計算複雑性が増大し、その現段階では表現の制限がいくつかあるにもかかわらず、サンプルのリプレイや予め定義されたタスク境界に頼ることなく連続的な学習を実現することを実証する。
- 参考スコア(独自算出の注目度): 15.376349115976534
- License:
- Abstract: We analyze the ability of computational units to retain past responses after parameter updates, a key property for system-wide continual learning. Neural networks trained with gradient descent lack this capability, prompting us to propose Modelleyen, an alternative approach with inherent response preservation. We demonstrate through experiments on modeling the dynamics of a simple environment and on MNIST that, despite increased computational complexity and some representational limitations at its current stage, Modelleyen achieves continual learning without relying on sample replay or predefined task boundaries.
- Abstract(参考訳): システム全体の連続学習において重要な特性であるパラメータ更新後の過去の応答を計算ユニットが保持する能力について分析する。
勾配降下で訓練されたニューラルネットワークは、この能力に欠けており、本質的な応答保存のための代替アプローチであるModelleyenを提案する。
我々は、単純な環境の力学をモデル化する実験と、MNISTを用いて、計算複雑性が増大し、その現段階では表現の制限がいくつかあるにもかかわらず、サンプルのリプレイや予め定義されたタスク境界に頼ることなく連続的な学習を実現することを実証する。
関連論文リスト
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learningはニューラルネットワークを"時間とともに"学習するための新しい統合フレームワーク
i)外部ソフトウェアソルバを必要とせずに統合できる、(ii)フィードフォワードおよびリカレントネットワークにおける勾配に基づく学習の概念を一般化する、(iii)新しい視点で開放する、という微分方程式に基づいている。
論文 参考訳(メタデータ) (2024-09-18T14:57:13Z) - Harnessing Neural Unit Dynamics for Effective and Scalable Class-Incremental Learning [38.09011520275557]
クラスインクリメンタルラーニング(Class-incremental Learning, CIL)は、古いクラスを忘れずに、非定常データストリームから新しいクラスを学ぶためのモデルをトレーニングすることを目的としている。
本稿では、ニューラルネットワークの動作をCILに適応させるニューラルネットワークユニットダイナミクスを調整し、新しい種類のコネクショナリストモデルを提案する。
論文 参考訳(メタデータ) (2024-06-04T15:47:03Z) - Look-Ahead Selective Plasticity for Continual Learning of Visual Tasks [9.82510084910641]
タスク境界において,タスクが終了し,他のタスク開始時に発生する新しいメカニズムを提案する。
CIFAR10やTinyImagenetなどのコンピュータビジョンデータセットのベンチマークで提案手法を評価する。
論文 参考訳(メタデータ) (2023-11-02T22:00:23Z) - Understanding Activation Patterns in Artificial Neural Networks by
Exploring Stochastic Processes [0.0]
我々はこれまで未利用であったプロセスの枠組みを活用することを提案する。
我々は、実際のニューロンスパイク列車に使用される神経科学技術を活用した、アクティベーション周波数のみに焦点をあてる。
各ネットワークにおけるアクティベーションパターンを記述するパラメータを導出し、アーキテクチャとトレーニングセット間で一貫した差異を明らかにする。
論文 参考訳(メタデータ) (2023-08-01T22:12:30Z) - IF2Net: Innately Forgetting-Free Networks for Continual Learning [49.57495829364827]
継続的な学習は、以前に学んだ知識に干渉することなく、新しい概念を漸進的に吸収することができる。
ニューラルネットワークの特性に触発され,本研究は,IF2Net(Innately Forgetting-free Network)の設計方法について検討した。
IF2Netは、1つのネットワークがテスト時にタスクのIDを告げることなく、本質的に無制限のマッピングルールを学習することを可能にする。
論文 参考訳(メタデータ) (2023-06-18T05:26:49Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
視覚力学モデリングのための新しい連続学習手法を提案し,その視覚制御と予測における有効性について検討する。
まず,タスク固有のダイナミクスをガウスの混合で学習する混合世界モデルを提案し,その上で,破滅的な忘れを克服するための新たなトレーニング戦略を提案する。
我々のモデルは,DeepMind Control と Meta-World のベンチマークにおいて,既存の連続的学習アルゴリズムと視覚的RLアルゴリズムの単純な組み合わせよりも優れている。
論文 参考訳(メタデータ) (2023-03-12T05:08:03Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
ニューラルネットワークのリプレイには、記憶されたサンプルを使ってシーケンシャルなデータのトレーニングが含まれる。
本研究では,これらの補助サンプルをフライ時に生成する手法を提案する。
代わりに、評価されたモデル自体内の学習したサンプルの暗黙の記憶が利用されます。
論文 参考訳(メタデータ) (2020-06-22T15:07:06Z) - Deep learning of contagion dynamics on complex networks [0.0]
本稿では,ネットワーク上での感染動態の効果的なモデルを構築するために,ディープラーニングに基づく補完的アプローチを提案する。
任意のネットワーク構造をシミュレーションすることで,学習したダイナミックスの性質を学習データを超えて探索することが可能になる。
この結果は,ネットワーク上での感染動態の効果的なモデルを構築するために,ディープラーニングが新たな補完的な視点を提供することを示す。
論文 参考訳(メタデータ) (2020-06-09T17:18:34Z) - Online Constrained Model-based Reinforcement Learning [13.362455603441552]
主要な要件は、限られた時間とリソース予算内に留まりながら、継続的な状態とアクションスペースを扱う能力である。
本稿では,ガウス過程回帰と回帰水平制御を組み合わせたモデルに基づくアプローチを提案する。
本研究では,自動走行作業におけるオンライン学習のメリットを実証する。
論文 参考訳(メタデータ) (2020-04-07T15:51:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。