PharmAgents: Building a Virtual Pharma with Large Language Model Agents
- URL: http://arxiv.org/abs/2503.22164v2
- Date: Mon, 31 Mar 2025 16:26:42 GMT
- Title: PharmAgents: Building a Virtual Pharma with Large Language Model Agents
- Authors: Bowen Gao, Yanwen Huang, Yiqiao Liu, Wenxuan Xie, Wei-Ying Ma, Ya-Qin Zhang, Yanyan Lan,
- Abstract summary: We introduce PharmAgents, a virtual pharmaceutical ecosystem driven by multi-agent collaboration.<n>The system integrates explainable, LLM-driven agents equipped with specialized machine learning models and computational tools.<n>It identifies potential therapeutic targets, discovers promising lead compounds, enhances binding affinity and key molecular properties, and performs in silico analyses of toxicity and synthetic feasibility.
- Score: 19.589707628042422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The discovery of novel small molecule drugs remains a critical scientific challenge with far-reaching implications for treating diseases and advancing human health. Traditional drug development--especially for small molecule therapeutics--is a highly complex, resource-intensive, and time-consuming process that requires multidisciplinary collaboration. Recent breakthroughs in artificial intelligence (AI), particularly the rise of large language models (LLMs), present a transformative opportunity to streamline and accelerate this process. In this paper, we introduce PharmAgents, a virtual pharmaceutical ecosystem driven by LLM-based multi-agent collaboration. PharmAgents simulates the full drug discovery workflow--from target discovery to preclinical evaluation--by integrating explainable, LLM-driven agents equipped with specialized machine learning models and computational tools. Through structured knowledge exchange and automated optimization, PharmAgents identifies potential therapeutic targets, discovers promising lead compounds, enhances binding affinity and key molecular properties, and performs in silico analyses of toxicity and synthetic feasibility. Additionally, the system supports interpretability, agent interaction, and self-evolvement, enabling it to refine future drug designs based on prior experience. By showcasing the potential of LLM-powered multi-agent systems in drug discovery, this work establishes a new paradigm for autonomous, explainable, and scalable pharmaceutical research, with future extensions toward comprehensive drug lifecycle management.
Related papers
- LLM Agent Swarm for Hypothesis-Driven Drug Discovery [2.7036595757881323]
PharmaSwarm is a unified multi-agent framework that orchestrates specialized "agents" to propose, validate, and refine hypotheses for novel drug targets and lead compounds.
By acting as an AI copilot, PharmaSwarm can accelerate translational research and deliver high-confidence hypotheses more efficiently than traditional pipelines.
arXiv Detail & Related papers (2025-04-24T22:27:50Z) - Collaborative Expert LLMs Guided Multi-Objective Molecular Optimization [51.104444856052204]
We present MultiMol, a collaborative large language model (LLM) system designed to guide multi-objective molecular optimization.<n>In evaluations across six multi-objective optimization tasks, MultiMol significantly outperforms existing methods, achieving a 82.30% success rate.
arXiv Detail & Related papers (2025-03-05T13:47:55Z) - Small Molecule Drug Discovery Through Deep Learning:Progress, Challenges, and Opportunities [34.72068278499029]
With the rapid development of deep learning (DL) techniques, DL-based small molecule drug discovery methods have achieved excellent performance.<n>This paper systematically summarize and generalize the recent key tasks and representative techniques in DL-based small molecule drug discovery.
arXiv Detail & Related papers (2025-02-13T05:24:52Z) - Y-Mol: A Multiscale Biomedical Knowledge-Guided Large Language Model for Drug Development [24.5979645373074]
Y-Mol is a knowledge-guided LLM designed to accomplish tasks across lead compound discovery, pre-clinic, and clinic prediction.
It learns from a corpus of publications, knowledge graphs, and expert-designed synthetic data.
Y-Mol significantly outperforms general-purpose LLMs in discovering lead compounds, predicting molecular properties, and identifying drug interaction events.
arXiv Detail & Related papers (2024-10-15T12:39:20Z) - Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials [49.19897427783105]
The integration of Large Language Models (LLMs) into the drug discovery and development field marks a significant paradigm shift.
We investigate how these advanced computational models can uncover target-disease linkage, interpret complex biomedical data, enhance drug molecule design, predict drug efficacy and safety profiles, and facilitate clinical trial processes.
arXiv Detail & Related papers (2024-09-06T02:03:38Z) - DrugAgent: Explainable Drug Repurposing Agent with Large Language Model-based Reasoning [10.528489471229946]
We propose a multi-agent framework to enhance the drug repurposing process using state-of-the-art machine learning techniques and knowledge integration.
Our framework comprises several specialized agents: an AI Agent trains robust drug-target interaction (DTI) models; a Knowledge Graph Agent utilizes the drug-gene interaction database (DGIdb) to systematically extract DTIs.
By integrating outputs from these agents, our system effectively harnesses diverse data sources, including external databases, to propose viable repurposing candidates.
arXiv Detail & Related papers (2024-08-23T21:24:59Z) - Explainable Biomedical Hypothesis Generation via Retrieval Augmented Generation enabled Large Language Models [46.05020842978823]
Large Language Models (LLMs) have emerged as powerful tools to navigate this complex data landscape.
RAGGED is a comprehensive workflow designed to support investigators with knowledge integration and hypothesis generation.
arXiv Detail & Related papers (2024-07-17T07:44:18Z) - Physical formula enhanced multi-task learning for pharmacokinetics prediction [54.13787789006417]
A major challenge for AI-driven drug discovery is the scarcity of high-quality data.
We develop a formula enhanced mul-ti-task learning (PEMAL) method that predicts four key parameters of pharmacokinetics simultaneously.
Our experiments reveal that PEMAL significantly lowers the data demand, compared to typical Graph Neural Networks.
arXiv Detail & Related papers (2024-04-16T07:42:55Z) - InstructMol: Multi-Modal Integration for Building a Versatile and Reliable Molecular Assistant in Drug Discovery [18.521011630419622]
Large Language Models (LLMs) offer promise in reshaping interactions with complex molecular data.
Our novel contribution, InstructMol, effectively aligns molecular structures with natural language via an instruction-tuning approach.
InstructMol showcases substantial performance improvements in drug discovery-related molecular tasks.
arXiv Detail & Related papers (2023-11-27T16:47:51Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [55.30328162764292]
Chemist-X is a comprehensive AI agent that automates the reaction condition optimization (RCO) task in chemical synthesis.
The agent uses retrieval-augmented generation (RAG) technology and AI-controlled wet-lab experiment executions.
Results of our automatic wet-lab experiments, achieved by fully LLM-supervised end-to-end operation with no human in the lope, prove Chemist-X's ability in self-driving laboratories.
arXiv Detail & Related papers (2023-11-16T01:21:33Z) - SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
We propose a novel setting and models for in-context drug synergy learning.
We are given a small "personalized dataset" of 10-20 drug synergy relationships in the context of specific cancer cell targets.
Our goal is to predict additional drug synergy relationships in that context.
arXiv Detail & Related papers (2023-06-19T17:03:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.