論文の概要: High-Fidelity Diffusion Face Swapping with ID-Constrained Facial Conditioning
- arxiv url: http://arxiv.org/abs/2503.22179v1
- Date: Fri, 28 Mar 2025 06:50:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 19:09:59.589573
- Title: High-Fidelity Diffusion Face Swapping with ID-Constrained Facial Conditioning
- Title(参考訳): ID制約顔条件付き高忠実拡散顔スワップ
- Authors: Dailan He, Xiahong Wang, Shulun Wang, Guanglu Song, Bingqi Ma, Hao Shao, Yu Liu, Hongsheng Li,
- Abstract要約: Face swappingは、ポーズや表現などのターゲット属性を保持しながら、ソースの顔認証をターゲットにシームレスに転送することを目的としている。
拡散モデルは、その優れた生成能力で知られており、最近、フェイススワッピングの品質を向上する可能性を示している。
本稿では,拡散型顔交換における2つの課題について述べる。
- 参考スコア(独自算出の注目度): 39.09330483562798
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Face swapping aims to seamlessly transfer a source facial identity onto a target while preserving target attributes such as pose and expression. Diffusion models, known for their superior generative capabilities, have recently shown promise in advancing face-swapping quality. This paper addresses two key challenges in diffusion-based face swapping: the prioritized preservation of identity over target attributes and the inherent conflict between identity and attribute conditioning. To tackle these issues, we introduce an identity-constrained attribute-tuning framework for face swapping that first ensures identity preservation and then fine-tunes for attribute alignment, achieved through a decoupled condition injection. We further enhance fidelity by incorporating identity and adversarial losses in a post-training refinement stage. Our proposed identity-constrained diffusion-based face-swapping model outperforms existing methods in both qualitative and quantitative evaluations, demonstrating superior identity similarity and attribute consistency, achieving a new state-of-the-art performance in high-fidelity face swapping.
- Abstract(参考訳): Face swappingは、ポーズや表現などのターゲット属性を保持しながら、ソースの顔認証をターゲットにシームレスに転送することを目的としている。
拡散モデルは、その優れた生成能力で知られており、最近、フェイススワッピングの品質を向上する可能性を示している。
本稿では,拡散型顔交換における2つの課題について述べる。
これらの課題に対処するために,まず顔交換のための属性調整フレームワークを導入する。
我々は、訓練後の改良段階において、アイデンティティと敵の損失を組み込むことにより、忠実度をさらに向上する。
提案手法は,定性評価と定量的評価の両面で既存手法より優れ,同一性類似性と属性の整合性が向上し,高忠実性顔交換における新しい最先端性能を実現している。
関連論文リスト
- Diffusion-based Adversarial Identity Manipulation for Facial Privacy Protection [14.797807196805607]
顔認識は、ソーシャルネットワーク上での不正な監視とユーザー追跡によって、深刻なプライバシー上の懸念を引き起こしている。
既存のプライバシーを強化する方法は、顔のプライバシーを保護する自然な顔画像を生成するのに失敗する。
そこで我々はDiffAIMを提案し、悪意のあるFRシステムに対して自然かつ高度に伝達可能な対向顔を生成する。
論文 参考訳(メタデータ) (2025-04-30T13:49:59Z) - iFADIT: Invertible Face Anonymization via Disentangled Identity Transform [51.123936665445356]
顔の匿名化は、個人のプライバシーを保護するために顔の視覚的アイデンティティを隠すことを目的としている。
Invertible Face Anonymization の頭字語 iFADIT を Disentangled Identity Transform を用いて提案する。
論文 参考訳(メタデータ) (2025-01-08T10:08:09Z) - HiFiVFS: High Fidelity Video Face Swapping [35.49571526968986]
Face swappingは、ソースからのIDとターゲットからの属性を組み合わせた結果を生成することを目的としている。
安定ビデオ拡散の強い生成能力と時間的先行を生かした高忠実度ビデオ顔交換フレームワークを提案する。
本手法は,映像面スワップにおける最新技術(SOTA)を質的かつ定量的に達成する。
論文 参考訳(メタデータ) (2024-11-27T12:30:24Z) - ID$^3$: Identity-Preserving-yet-Diversified Diffusion Models for Synthetic Face Recognition [60.15830516741776]
合成顔認識(SFR)は、実際の顔データの分布を模倣するデータセットを生成することを目的としている。
拡散燃料SFRモデルであるtextID3$を紹介します。
textID3$はID保存損失を利用して、多様だがアイデンティティに一貫性のある顔の外観を生成する。
論文 参考訳(メタデータ) (2024-09-26T06:46:40Z) - Disentangle Before Anonymize: A Two-stage Framework for Attribute-preserved and Occlusion-robust De-identification [55.741525129613535]
匿名化前の混乱」は、新しい二段階フレームワーク(DBAF)である
このフレームワークには、Contrastive Identity Disentanglement (CID)モジュールとKey-authorized Reversible Identity Anonymization (KRIA)モジュールが含まれている。
大規模な実験により,本手法は最先端の非識別手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-11-15T08:59:02Z) - FaceDancer: Pose- and Occlusion-Aware High Fidelity Face Swapping [62.38898610210771]
そこで我々は,FaceDancerという顔のスワップとID転送のための新しい単一ステージ手法を提案する。
アダプティブ・フィーチャー・フュージョン・アテンション(AFFA)と解釈的特徴類似性規則化(IFSR)の2つの主要なコントリビューションがある。
論文 参考訳(メタデータ) (2022-10-19T11:31:38Z) - FICGAN: Facial Identity Controllable GAN for De-identification [34.38379234653657]
本稿では,プライバシー保護を確実にした高品質な顔画像を生成するための顔識別制御可能GAN(FICGAN)を提案する。
この分析に基づいて,顔画像上の非同一性属性から同一性属性をアンタングル化することを学ぶ,自己エンコーダに基づく条件生成モデルであるFICGANを開発した。
論文 参考訳(メタデータ) (2021-10-02T07:09:27Z) - Dual-Attention GAN for Large-Pose Face Frontalization [59.689836951934694]
本稿では,フォトリアリスティック顔フロンダル化のためのDA-GAN(Dual-Attention Generative Adversarial Network)を提案する。
具体的には、ローカル機能と長距離依存関係を統合するために、自己アテンションベースのジェネレータが導入された。
顔領域の局所的特徴を強調するために,新しい顔認識に基づく識別器を適用した。
論文 参考訳(メタデータ) (2020-02-17T20:00:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。