論文の概要: Enhancing Accuracy of Quantum-Selected Configuration Interaction Calculations using Multireference Perturbation Theory: Application to Aromatic Molecules
- arxiv url: http://arxiv.org/abs/2503.22221v1
- Date: Fri, 28 Mar 2025 08:12:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:31:17.712931
- Title: Enhancing Accuracy of Quantum-Selected Configuration Interaction Calculations using Multireference Perturbation Theory: Application to Aromatic Molecules
- Title(参考訳): マルチ参照摂動理論を用いた量子選択型構成相互作用計算の精度向上:芳香族分子への応用
- Authors: Soichi Shirai, Shih-Yen Tseng, Hokuto Iwakiri, Takahiro Horiba, Hirotoshi Hirai, Sho Koh,
- Abstract要約: 量子選択構成相互作用(QSCI)は、量子化学計算のための新しい量子-古典的ハイブリッドアルゴリズムである。
摂動療法を取り入れたことにより,精度が向上した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Quantum-selected configuration interaction (QSCI) is a novel quantum-classical hybrid algorithm for quantum chemistry calculations. This method identifies electron configurations having large weights for the target state using quantum devices and allows CI calculations to be performed with the selected configurations on classical computers. In principle, the QSCI algorithm can take advantage of the ability to handle large configuration spaces while reducing the negative effects of noise on the calculated values. At present, QSCI calculations are limited by qubit noise during the input state preparation and measurement process, restricting them to small active spaces. These limitations make it difficult to perform calculations with quantitative accuracy. The present study demonstrates a computational scheme based on multireference perturbation theory calculations on a classical computer, using the QSCI wavefunction as a reference. This method was applied to ground and excited state calculations for two typical aromatic molecules, naphthalene and tetracene. The incorporation of the perturbation treatment was found to provide improved accuracy. Extension of the reference space based on the QSCI-selected configurations as a means of further improvement was also investigated.
- Abstract(参考訳): 量子選択構成相互作用(QSCI)は、量子化学計算のための新しい量子-古典的ハイブリッドアルゴリズムである。
本手法では、量子デバイスを用いてターゲット状態に対して大きな重みを持つ電子配置を特定し、選択した構成でCI計算を行うことができる。
原理として、QSCIアルゴリズムは、計算された値に対するノイズの負の影響を低減しつつ、大きな構成空間を処理できる能力を利用することができる。
現在、QSCI計算は入力状態の準備と測定の過程でクビットノイズによって制限されており、小さな活性空間に制限されている。
これらの制限は、定量的な精度で計算を行うのを難しくする。
本研究では、QSCI波動関数を基準として、古典計算機上でのマルチ参照摂動理論計算に基づく計算方式を示す。
この方法は2つの典型的な芳香族分子であるナフタレンとテトラセンのグラウンドおよび励起状態計算に適用した。
摂動療法を取り入れたことにより,精度が向上した。
また,QSCI選択構成に基づく参照空間の拡張についても検討した。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Calculating the energy profile of an enzymatic reaction on a quantum computer [0.0]
量子コンピューティングは、量子化学計算を可能にするための有望な道を提供する。
最近の研究は、ノイズ中間量子(NISQ)デバイスのためのアルゴリズムの開発とスケーリングに向けられている。
論文 参考訳(メタデータ) (2024-08-20T18:00:01Z) - Shortcut to Chemically Accurate Quantum Computing via Density-based Basis-set Correction [0.4909687476363595]
密度ベースベースセット補正(DBBSC)による密度汎関数理論に量子コンピューティングアンサッツを組み込む。
完全基底セットの極限に近づき、化学的に正確な量子計算へのショートカットを提供する。
結果として生じるアプローチは、ベースセット収束を自己整合的に加速し、電子密度、基底状態エネルギー、および1次特性を改善する。
論文 参考訳(メタデータ) (2024-05-19T14:31:01Z) - Workflow for practical quantum chemical calculations with quantum phase estimation algorithm: electronic ground and π-π* excited states of benzene and its derivatives† [0.0]
量子コンピュータは、従来のコンピュータに比べて計算資源が少ない完全構成の相互作用計算を実行することが期待されている。
QPEに基づく量子化学計算は、古典的コンピュータ上での数値シミュレーションにおいても報告されている。
電子グラウンドのQPEシミュレーションとベンゼンおよびそのクロロおよびニトロ誘導体のπ-pi*励起一重項状態について報告する。
論文 参考訳(メタデータ) (2023-12-27T01:57:39Z) - Electronic Structure Calculations using Quantum Computing [0.0]
本稿では,変分量子固有解法(VQE)アルゴリズムを用いた古典量子計算手法を提案する。
我々のアルゴリズムは古典的手法よりも少ない計算資源を必要とする合理化プロセスを提供する。
結果は,新しい材料や技術の開発を迅速化するアルゴリズムの可能性を示している。
論文 参考訳(メタデータ) (2023-05-13T12:02:05Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
短期量子コンピュータは、小さな分子の基底状態特性を計算することができる。
計算アンサッツの構造と装置ノイズによる誤差が計算にどのように影響するかを示す。
論文 参考訳(メタデータ) (2021-12-31T16:33:10Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
本稿では、分子の全電子エネルギーと古典的コンピュータ上の特性を計算できる新しいハイブリッド古典的アルゴリズムを提案する。
本稿では,現在利用可能な量子コンピュータ上で,化学的に関連性のある結果と精度を実現する量子古典ハイブリッドアルゴリズムの能力を実証する。
論文 参考訳(メタデータ) (2021-06-22T18:00:00Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
VQEとADAPT-VQEの精度をベンチマークし、電子基底状態とポテンシャルエネルギー曲線を計算する。
どちらの手法もエネルギーと基底状態の優れた推定値を提供する。
勾配に基づく最適化はより経済的であり、勾配のない類似シミュレーションよりも優れた性能を提供する。
論文 参考訳(メタデータ) (2020-11-02T19:52:04Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
本研究は、D-Wave 2000Q量子アニール上の分子電子ハミルトニアン固有値-固有ベクトル問題を解くために、一般量子アニール固有解法(QAE)アルゴリズムを実装した。
そこで本研究では,D-Waveハードウェアを用いた各種分子系における基底および電子励起状態の取得について述べる。
論文 参考訳(メタデータ) (2020-09-02T22:46:47Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
小型地震インバージョン問題を解決するために,D波量子アニールに量子アルゴリズムを適用した。
量子コンピュータによって達成される精度は、少なくとも古典的コンピュータと同程度である。
論文 参考訳(メタデータ) (2020-05-06T14:18:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。