Composite Indicator-Guided Infilling Sampling for Expensive Multi-Objective Optimization
- URL: http://arxiv.org/abs/2503.22224v1
- Date: Fri, 28 Mar 2025 08:15:58 GMT
- Title: Composite Indicator-Guided Infilling Sampling for Expensive Multi-Objective Optimization
- Authors: Huixiang Zhen, Xiaotong Li, Wenyin Gong, Ling Wang, Xiangyun Hu,
- Abstract summary: We propose a composite indicator-based evolutionary algorithm (CI-EMO) for expensive multi-objective optimization.<n>We design a novel composite performance indicator to guide the selection of candidates for real fitness evaluation.<n>The proposed algorithm outperforms five state-of-the-art expensive multi-objective optimization algorithms.
- Score: 17.290389254217565
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In expensive multi-objective optimization, where the evaluation budget is strictly limited, selecting promising candidate solutions for expensive fitness evaluations is critical for accelerating convergence and improving algorithmic performance. However, designing an optimization strategy that effectively balances convergence, diversity, and distribution remains a challenge. To tackle this issue, we propose a composite indicator-based evolutionary algorithm (CI-EMO) for expensive multi-objective optimization. In each generation of the optimization process, CI-EMO first employs NSGA-III to explore the solution space based on fitness values predicted by surrogate models, generating a candidate population. Subsequently, we design a novel composite performance indicator to guide the selection of candidates for real fitness evaluation. This indicator simultaneously considers convergence, diversity, and distribution to improve the efficiency of identifying promising candidate solutions, which significantly improves algorithm performance. The composite indicator-based candidate selection strategy is easy to achieve and computes efficiency. Component analysis experiments confirm the effectiveness of each element in the composite performance indicator. Comparative experiments on benchmark problems demonstrate that the proposed algorithm outperforms five state-of-the-art expensive multi-objective optimization algorithms.
Related papers
- Review, Refine, Repeat: Understanding Iterative Decoding of AI Agents with Dynamic Evaluation and Selection [71.92083784393418]
Inference-time methods such as Best-of-N (BON) sampling offer a simple yet effective alternative to improve performance.
We propose Iterative Agent Decoding (IAD) which combines iterative refinement with dynamic candidate evaluation and selection guided by a verifier.
arXiv Detail & Related papers (2025-04-02T17:40:47Z) - Evaluating the effectiveness, reliability and efficiency of a multi-objective sequential optimization approach for building performance design [0.8168080812068832]
This paper proposes and evaluates a sequential approach for multi-objective design optimization of building geometry, fabric, HVAC system and controls for building performance.<n>The performance of the sequential approach is benchmarked against a full factorial search and compared to the NSGA-II algorithm.<n>This research indicates that a sequential optimization approach is a highly efficient and robust alternative to the standard NSGA-II algorithm.
arXiv Detail & Related papers (2024-12-13T08:00:00Z) - Un-evaluated Solutions May Be Valuable in Expensive Optimization [5.6787965501364335]
We propose a strategic approach that incorporates high-quality, un-evaluated solutions predicted by surrogate models during the selection phase.<n>This approach aims to improve the distribution of evaluated solutions, thereby generating a superior next generation of solutions.
arXiv Detail & Related papers (2024-12-05T04:06:30Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Uncertainty-Aware Search Framework for Multi-Objective Bayesian
Optimization [40.40632890861706]
We consider the problem of multi-objective (MO) blackbox optimization using expensive function evaluations.
We propose a novel uncertainty-aware search framework referred to as USeMO to efficiently select the sequence of inputs for evaluation.
arXiv Detail & Related papers (2022-04-12T16:50:48Z) - GPSAF: A Generalized Probabilistic Surrogate-Assisted Framework for
Constrained Single- and Multi-objective Optimization [7.8140593450932965]
This paper proposes a generalized probabilistic surrogate-assisted framework (GPSAF)
GPSAF is applicable to a broad category of unconstrained and constrained, single- and multi-objective optimization algorithms.
arXiv Detail & Related papers (2022-04-06T13:22:30Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - PAMELI: A Meta-Algorithm for Computationally Expensive Multi-Objective
Optimization Problems [0.0]
The proposed algorithm is based on solving a set of surrogate problems defined by models of the real one.
Our algorithm also performs a meta-search for optimal surrogate models and navigation strategies for the optimization landscape.
arXiv Detail & Related papers (2021-03-19T11:18:03Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.