Analysis of On-policy Policy Gradient Methods under the Distribution Mismatch
- URL: http://arxiv.org/abs/2503.22244v1
- Date: Fri, 28 Mar 2025 08:52:41 GMT
- Title: Analysis of On-policy Policy Gradient Methods under the Distribution Mismatch
- Authors: Weizhen Wang, Jianping He, Xiaoming Duan,
- Abstract summary: We analyze the impact of a distribution mismatch on the policy gradient methods.<n>Our findings offer new insights into the robustness of policy gradient methods as well as the gap between theoretical foundations and practical implementations.
- Score: 5.684512532326261
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Policy gradient methods are one of the most successful methods for solving challenging reinforcement learning problems. However, despite their empirical successes, many SOTA policy gradient algorithms for discounted problems deviate from the theoretical policy gradient theorem due to the existence of a distribution mismatch. In this work, we analyze the impact of this mismatch on the policy gradient methods. Specifically, we first show that in the case of tabular parameterizations, the methods under the mismatch remain globally optimal. Then, we extend this analysis to more general parameterizations by leveraging the theory of biased stochastic gradient descent. Our findings offer new insights into the robustness of policy gradient methods as well as the gap between theoretical foundations and practical implementations.
Related papers
- Achieving $\widetilde{\mathcal{O}}(\sqrt{T})$ Regret in Average-Reward POMDPs with Known Observation Models [56.92178753201331]
We tackle average-reward infinite-horizon POMDPs with an unknown transition model.<n>We present a novel and simple estimator that overcomes this barrier.
arXiv Detail & Related papers (2025-01-30T22:29:41Z) - Mollification Effects of Policy Gradient Methods [16.617678267301702]
We develop a rigorous framework for understanding how policy gradient methods mollify non-smooth optimization landscapes.
We demonstrate the equivalence between policy gradient methods and solving backward heat equations.
We make the connection between this limitation and the uncertainty principle in harmonic analysis to understand the effects of exploration with policies in RL.
arXiv Detail & Related papers (2024-05-28T05:05:33Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
Proximal point methods have attracted considerable interest owing to their numerical stability and robustness against imperfect tuning.
This paper presents a comprehensive analysis of a broad range of variations of the proximal point method (SPPM)
arXiv Detail & Related papers (2024-05-24T21:09:19Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Elementary Analysis of Policy Gradient Methods [3.468656086349638]
This paper focuses on the discounted MDP setting and conduct a systematic study of the aforementioned policy optimization methods.
Several novel results are presented, including 1) global linear convergence of projected policy gradient for any constant step size, 2) sublinear convergence of softmax policy gradient for any constant step size, 3) global linear convergence of softmax natural policy gradient for any constant step size, 4) global linear convergence of entropy regularized softmax policy gradient for a wider range of constant step sizes than existing result, 5) tight local linear convergence rate of entropy regularized natural policy gradient, and 6) a new and concise local quadratic convergence rate of soft
arXiv Detail & Related papers (2024-04-04T11:16:16Z) - Gradient Informed Proximal Policy Optimization [35.22712034665224]
We introduce a novel policy learning method that integrates analytical gradients from differentiable environments with the Proximal Policy Optimization (PPO) algorithm.
By adaptively modifying the alpha value, we can effectively manage the influence of analytical policy gradients during learning.
Our proposed approach outperforms baseline algorithms in various scenarios, such as function optimization, physics simulations, and traffic control environments.
arXiv Detail & Related papers (2023-12-14T07:50:21Z) - Optimization Landscape of Policy Gradient Methods for Discrete-time
Static Output Feedback [22.21598324895312]
This paper analyzes the optimization landscape inherent to policy gradient methods when applied to static output feedback control.
We derive novel findings regarding convergence (and nearly dimension-free rate) to stationary points for three policy gradient methods.
We provide proof that the vanilla policy gradient method exhibits linear convergence towards local minima when near such minima.
arXiv Detail & Related papers (2023-10-29T14:25:57Z) - A Temporal-Difference Approach to Policy Gradient Estimation [27.749993205038148]
We propose a new approach of reconstructing the policy gradient from the start state without requiring a particular sampling strategy.
By using temporal-difference updates of the gradient critic from an off-policy data stream, we develop the first estimator that sidesteps the distribution shift issue in a model-free way.
arXiv Detail & Related papers (2022-02-04T21:23:33Z) - Bag of Tricks for Natural Policy Gradient Reinforcement Learning [87.54231228860495]
We have implemented and compared strategies that impact performance in natural policy gradient reinforcement learning.
The proposed collection of strategies for performance optimization can improve results by 86% to 181% across the MuJuCo control benchmark.
arXiv Detail & Related papers (2022-01-22T17:44:19Z) - Stable Policy Optimization via Off-Policy Divergence Regularization [50.98542111236381]
Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO) are among the most successful policy gradient approaches in deep reinforcement learning (RL)
We propose a new algorithm which stabilizes the policy improvement through a proximity term that constrains the discounted state-action visitation distribution induced by consecutive policies to be close to one another.
Our proposed method can have a beneficial effect on stability and improve final performance in benchmark high-dimensional control tasks.
arXiv Detail & Related papers (2020-03-09T13:05:47Z) - Statistically Efficient Off-Policy Policy Gradients [80.42316902296832]
We consider the statistically efficient estimation of policy gradients from off-policy data.
We propose a meta-algorithm that achieves the lower bound without any parametric assumptions.
We establish guarantees on the rate at which we approach a stationary point when we take steps in the direction of our new estimated policy gradient.
arXiv Detail & Related papers (2020-02-10T18:41:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.