論文の概要: Divide to Conquer: A Field Decomposition Approach for Multi-Organ Whole-Body CT Image Registration
- arxiv url: http://arxiv.org/abs/2503.22281v1
- Date: Fri, 28 Mar 2025 09:51:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:29:31.066110
- Title: Divide to Conquer: A Field Decomposition Approach for Multi-Organ Whole-Body CT Image Registration
- Title(参考訳): コンバータへの分割:多臓器全体CT画像登録のためのフィールド分解アプローチ
- Authors: Xuan Loc Pham, Mathias Prokop, Bram van Ginneken, Alessa Hering,
- Abstract要約: 本研究では,多臓器全体CT画像登録における変形の複雑さに対処する新しいフィールド分解手法を提案する。
本研究では,最適化手法と深層学習に基づく2つのベースライン登録手法が選択された。
実験により, 提案手法は, 多臓器全体CT画像登録における複雑な変形の処理において, ベースライン法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 4.076337825118719
- License:
- Abstract: Image registration is an essential technique for the analysis of Computed Tomography (CT) images in clinical practice. However, existing methodologies are predominantly tailored to a specific organ of interest and often exhibit lower performance on other organs, thus limiting their generalizability and applicability. Multi-organ registration addresses these limitations, but the simultaneous alignment of multiple organs with diverse shapes, sizes and locations requires a highly complex deformation field with a multi-layer composition of individual deformations. This study introduces a novel field decomposition approach to address the high complexity of deformations in multi-organ whole-body CT image registration. The proposed method is trained and evaluated on a longitudinal dataset of 691 patients, each with two CT images obtained at distinct time points. These scans fully encompass the thoracic, abdominal, and pelvic regions. Two baseline registration methods are selected for this study: one based on optimization techniques and another based on deep learning. Experimental results demonstrate that the proposed approach outperforms baseline methods in handling complex deformations in multi-organ whole-body CT image registration.
- Abstract(参考訳): 臨床におけるCT画像の解析には画像登録が不可欠である。
しかし、既存の方法論は、主に特定の臓器に適合し、しばしば他の臓器に低い性能を示すため、その一般化性と適用性は制限される。
多臓器登録はこれらの制限に対処するが、多様な形状、大きさ、位置を持つ複数の臓器の同時アライメントは、個々の変形の多層構造を持つ非常に複雑な変形場を必要とする。
本研究では,多臓器全体CT画像登録における変形の複雑さに対処する新しいフィールド分解手法を提案する。
提案法は691例の縦断的データセットを用いて,それぞれ異なる時間点で得られた2つのCT画像を用いて訓練し,評価した。
これらのスキャンは胸部,腹部,骨盤領域を完全に包含する。
本研究では,最適化手法と深層学習に基づく2つのベースライン登録手法が選択された。
実験により, 提案手法は, 多臓器全体CT画像登録における複雑な変形の処理において, ベースライン法よりも優れていることが示された。
関連論文リスト
- 2D-3D Deformable Image Registration of Histology Slide and Micro-CT with ML-based Initialization [2.1409936129568377]
軟部組織CTの画質は低かったため,組織スライドとmuCTとの相関が困難であった。
本稿では,新しい2D-3Dマルチモーダルデフォルマブル画像登録法を提案する。
論文 参考訳(メタデータ) (2024-10-18T09:51:43Z) - Tissue-Contrastive Semi-Masked Autoencoders for Segmentation Pretraining on Chest CT [10.40407976789742]
胸部CT画像のモデリングのための組織コントラストセミマスクオートエンコーダ(TCS-MAE)と呼ばれるMIM法を提案する。
本手法は, 組織型マスキング再構成法により, より微細な解剖学的特徴を捉えるとともに, マスク画像とオリジナル画像との対比学習を施した二重AEアーキテクチャを設計した。
論文 参考訳(メタデータ) (2024-07-12T03:24:17Z) - Modality-Agnostic Structural Image Representation Learning for Deformable Multi-Modality Medical Image Registration [22.157402663162877]
本稿では,識別的・コントラスト的・非分散的な深部構造画像表現を学習するためのモダリティ非依存的構造表現学習法を提案する。
本手法は,従来の局所的構造表現や統計的類似度尺度よりも識別性と精度の点で優れている。
論文 参考訳(メタデータ) (2024-02-29T08:01:31Z) - Multi-View Vertebra Localization and Identification from CT Images [57.56509107412658]
我々は,CT画像からの多視点椎体局在と同定を提案する。
本研究では,3次元問題を異なる視点における2次元局所化および識別タスクに変換する。
本手法は,多視点グローバル情報を自然に学習することができる。
論文 参考訳(メタデータ) (2023-07-24T14:43:07Z) - Structure-aware registration network for liver DCE-CT images [50.28546654316009]
セグメント化誘導深層登録網に関連臓器の構造情報を組み込んだ構造認識型登録手法を提案する。
提案手法は,最新技術よりも高い登録精度を達成し,解剖学的構造を効果的に維持することができる。
論文 参考訳(メタデータ) (2023-03-08T14:08:56Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Unsupervised Multimodal Image Registration with Adaptative Gradient
Guidance [23.461130560414805]
教師なし学習に基づく手法は、変形可能な画像登録における精度と効率よりも有望な性能を示す。
既存の手法の予測変形場は、登録済み画像対に完全に依存する。
両モデルから推定される変形場を利用する新しい多モード登録フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-12T05:47:20Z) - Patch-based field-of-view matching in multi-modal images for
electroporation-based ablations [0.6285581681015912]
マルチモーダルイメージングセンサーは、現在、介入治療作業フローの異なるステップに関与している。
この情報を統合するには、取得した画像間の観測された解剖の正確な空間的アライメントに依存する。
本稿では, ボクセルパッチを用いた地域登録手法が, ボクセルワイドアプローチと「グローバルシフト」アプローチとの間に優れた構造的妥協をもたらすことを示す。
論文 参考訳(メタデータ) (2020-11-09T11:27:45Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
3次元CT画像におけるCOVID-19の重症度自動評価のための相乗的学習フレームワークを提案する。
マルチタスクのディープネットワーク(M$2$UNet)が開発され、新型コロナウイルス患者の重症度を評価する。
われわれのM$2$UNetはパッチレベルのエンコーダと肺葉分画のためのセグメンテーションサブネットワークと重度評価のための分類サブネットワークから構成されている。
論文 参考訳(メタデータ) (2020-05-08T03:16:15Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。