Large Language Models Are Democracy Coders with Attitudes
- URL: http://arxiv.org/abs/2503.22315v2
- Date: Sat, 07 Jun 2025 12:45:18 GMT
- Title: Large Language Models Are Democracy Coders with Attitudes
- Authors: Nils B. Weidmann, Mats Faulborn, David GarcĂa,
- Abstract summary: We use two cutting-edge Large Language Models for the coding of democracy indicators from the V-Dem project.<n>With access to a huge amount of information, these models may be able to rate the many "soft" characteristics of regimes without the cognitive biases that humans potentially possess.<n>We show that when these models deviate from human assessments, they do so in different but consistent ways.
- Score: 0.07448098004925983
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current political developments worldwide illustrate that research on democratic backsliding is as important as ever. A recent exchange in Political Science & Politics (2/2024) has highlighted again a fundamental challenge in this literature: the measurement of democracy. With many democracy indicators consisting of subjective assessments rather than factual observations, trends in democracy over time could be due to human biases in the coding of these indicators rather than empirical facts. In this paper, we leverage two cutting-edge Large Language Models (LLMs) for the coding of democracy indicators from the V-Dem project. With access to a huge amount of information, these models may be able to rate the many "soft" characteristics of regimes without the cognitive biases that humans potentially possess. While LLM-generated codings largely align with expert coders for many countries, we show that when these models deviate from human assessments, they do so in different but consistent ways: Some LLMs are too pessimistic, while others consistently overestimate the democratic quality of these countries. While the combination of the two LLM codings can alleviate this concern, we conclude that it is difficult to replace human coders with LLMs, since the extent and direction of these attitudes is not known a priori.
Related papers
- Democratic or Authoritarian? Probing a New Dimension of Political Biases in Large Language Models [72.89977583150748]
We propose a novel methodology to assess how Large Language Models align with broader geopolitical value systems.<n>We find that LLMs generally favor democratic values and leaders, but exhibit increases favorability toward authoritarian figures when prompted in Mandarin.
arXiv Detail & Related papers (2025-06-15T07:52:07Z) - Large Language Models Reflect the Ideology of their Creators [71.65505524599888]
Large language models (LLMs) are trained on vast amounts of data to generate natural language.<n>This paper shows that the ideological stance of an LLM appears to reflect the worldview of its creators.
arXiv Detail & Related papers (2024-10-24T04:02:30Z) - Can LLMs advance democratic values? [0.0]
We argue that LLMs should be kept well clear of formal democratic decision-making processes.
They can be put to good use in strengthening the informal public sphere.
arXiv Detail & Related papers (2024-10-10T23:24:06Z) - GermanPartiesQA: Benchmarking Commercial Large Language Models for Political Bias and Sycophancy [20.06753067241866]
We evaluate and compare the alignment of six LLMs by OpenAI, Anthropic, and Cohere with German party positions.
We conduct our prompt experiment for which we use the benchmark and sociodemographic data of leading German parliamentarians.
arXiv Detail & Related papers (2024-07-25T13:04:25Z) - Representation Bias in Political Sample Simulations with Large Language Models [54.48283690603358]
This study seeks to identify and quantify biases in simulating political samples with Large Language Models.
Using the GPT-3.5-Turbo model, we leverage data from the American National Election Studies, German Longitudinal Election Study, Zuobiao dataset, and China Family Panel Studies.
arXiv Detail & Related papers (2024-07-16T05:52:26Z) - Language Model Alignment in Multilingual Trolley Problems [138.5684081822807]
Building on the Moral Machine experiment, we develop a cross-lingual corpus of moral dilemma vignettes in over 100 languages called MultiTP.
Our analysis explores the alignment of 19 different LLMs with human judgments, capturing preferences across six moral dimensions.
We discover significant variance in alignment across languages, challenging the assumption of uniform moral reasoning in AI systems.
arXiv Detail & Related papers (2024-07-02T14:02:53Z) - Evaluating Implicit Bias in Large Language Models by Attacking From a Psychometric Perspective [66.34066553400108]
We conduct a rigorous evaluation of large language models' implicit bias towards certain demographics.<n>Inspired by psychometric principles, we propose three attack approaches, i.e., Disguise, Deception, and Teaching.<n>Our methods can elicit LLMs' inner bias more effectively than competitive baselines.
arXiv Detail & Related papers (2024-06-20T06:42:08Z) - Large Language Models' Detection of Political Orientation in Newspapers [0.0]
Various methods have been developed to better understand newspapers' positioning.
The advent of Large Language Models (LLM) hold disruptive potential to assist researchers and citizens alike.
We compare how four widely employed LLMs rate the positioning of newspapers, and compare if their answers align with one another.
Over a woldwide dataset, articles in newspapers are positioned strikingly differently by single LLMs, hinting to inconsistent training or excessive randomness in the algorithms.
arXiv Detail & Related papers (2024-05-23T06:18:03Z) - Assessing Political Bias in Large Language Models [0.624709220163167]
We evaluate the political bias of open-source Large Language Models (LLMs) concerning political issues within the European Union (EU) from a German voter's perspective.
We show that larger models, such as Llama3-70B, tend to align more closely with left-leaning political parties, while smaller models often remain neutral.
arXiv Detail & Related papers (2024-05-17T15:30:18Z) - Whose Side Are You On? Investigating the Political Stance of Large Language Models [56.883423489203786]
We investigate the political orientation of Large Language Models (LLMs) across a spectrum of eight polarizing topics.
Our investigation delves into the political alignment of LLMs across a spectrum of eight polarizing topics, spanning from abortion to LGBTQ issues.
The findings suggest that users should be mindful when crafting queries, and exercise caution in selecting neutral prompt language.
arXiv Detail & Related papers (2024-03-15T04:02:24Z) - Political Compass or Spinning Arrow? Towards More Meaningful Evaluations for Values and Opinions in Large Language Models [61.45529177682614]
We challenge the prevailing constrained evaluation paradigm for values and opinions in large language models.
We show that models give substantively different answers when not forced.
We distill these findings into recommendations and open challenges in evaluating values and opinions in LLMs.
arXiv Detail & Related papers (2024-02-26T18:00:49Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
Large Language Models (LLMs) have sparked intense debate regarding the prevalence of bias in these models and its mitigation.
We propose a prompt-based method for the extraction of confounding and mediating attributes which contribute to the decision process.
We find that the observed disparate treatment can at least in part be attributed to confounding and mitigating attributes and model misalignment.
arXiv Detail & Related papers (2023-11-15T00:02:25Z) - Large Language Models are Not Yet Human-Level Evaluators for Abstractive
Summarization [66.08074487429477]
We investigate the stability and reliability of large language models (LLMs) as automatic evaluators for abstractive summarization.
We find that while ChatGPT and GPT-4 outperform the commonly used automatic metrics, they are not ready as human replacements.
arXiv Detail & Related papers (2023-05-22T14:58:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.