論文の概要: Training Large Language Models for Advanced Typosquatting Detection
- arxiv url: http://arxiv.org/abs/2503.22406v1
- Date: Fri, 28 Mar 2025 13:16:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:31:48.821731
- Title: Training Large Language Models for Advanced Typosquatting Detection
- Title(参考訳): タイポスクワット検出のための大規模言語モデルの訓練
- Authors: Jackson Welch,
- Abstract要約: Typosquattingは、ユーザーを騙し、マルウェアを配布し、フィッシング攻撃を行うためにURLをタイプする際のヒューマンエラーを利用するサイバー脅威である。
本研究では,大型言語モデル (LLM) を利用したタイポスクワット検出手法を提案する。
実験結果から, Phi-4 14Bモデルは他の試験モデルよりも優れており, 精度は98%, トレーニングサンプルは数千点であった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Typosquatting is a long-standing cyber threat that exploits human error in typing URLs to deceive users, distribute malware, and conduct phishing attacks. With the proliferation of domain names and new Top-Level Domains (TLDs), typosquatting techniques have grown more sophisticated, posing significant risks to individuals, businesses, and national cybersecurity infrastructure. Traditional detection methods primarily focus on well-known impersonation patterns, leaving gaps in identifying more complex attacks. This study introduces a novel approach leveraging large language models (LLMs) to enhance typosquatting detection. By training an LLM on character-level transformations and pattern-based heuristics rather than domain-specific data, a more adaptable and resilient detection mechanism develops. Experimental results indicate that the Phi-4 14B model outperformed other tested models when properly fine tuned achieving a 98% accuracy rate with only a few thousand training samples. This research highlights the potential of LLMs in cybersecurity applications, specifically in mitigating domain-based deception tactics, and provides insights into optimizing machine learning strategies for threat detection.
- Abstract(参考訳): Typosquattingは、ユーザーを騙し、マルウェアを配布し、フィッシング攻撃を行うためにURLをタイプする人間のエラーを悪用する、長年にわたるサイバー脅威である。
ドメイン名や新しいトップレベルドメイン(TLD)の普及に伴い、タイポスクワット技術はより洗練され、個人、企業、そして国家のサイバーセキュリティインフラに重大なリスクをもたらしている。
従来の検出方法は、主によく知られた偽造パターンに焦点を当て、より複雑な攻撃を特定するのにギャップを残している。
本研究では,大型言語モデル (LLM) を利用したタイポスクワット検出手法を提案する。
LLMをドメイン固有のデータではなく、文字レベルの変換とパターンベースのヒューリスティックスでトレーニングすることにより、より適応的でレジリエントな検出機構が発達する。
実験結果から, Phi-4 14Bモデルは他の試験モデルよりも優れており, 精度は98%, トレーニングサンプルは数千点であった。
この研究は、サイバーセキュリティアプリケーション、特にドメインベースの詐欺戦術の緩和におけるLLMの可能性を強調し、脅威検出のための機械学習戦略の最適化に関する洞察を提供する。
関連論文リスト
- Sustainable Self-evolution Adversarial Training [51.25767996364584]
対戦型防衛モデルのための持続的自己進化支援訓練(SSEAT)フレームワークを提案する。
本研究は,様々な種類の対角的事例から学習を実現するために,連続的な対向防衛パイプラインを導入する。
また,より多様で重要な再学習データを選択するために,逆データ再生モジュールを提案する。
論文 参考訳(メタデータ) (2024-12-03T08:41:11Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
本稿では,顔偽造検出に汎用的かつパラメータ効率の高い手法を提案する。
フォージェリー・ソース・ドメインの多様性を増大させるフォージェリー・ミックス・フォーミュレーションを設計する。
設計したモデルは、トレーニング可能なパラメータを著しく減らし、最先端の一般化性を実現する。
論文 参考訳(メタデータ) (2024-08-23T01:53:36Z) - Extending Network Intrusion Detection with Enhanced Particle Swarm Optimization Techniques [0.0]
本研究では,機械学習(ML)と深層学習(DL)技術を組み合わせて,ネットワーク侵入検知システム(NIDS)を改善する方法について検討する。
この研究は、CSE-CIC-IDS 2018とLITNET-2020データセットを使用して、MLメソッド(決定木、ランダムフォレスト、XGBoost)とDLモデル(CNN、RNN、DNN)を主要なパフォーマンス指標と比較する。
Decision Treeモデルでは、EPSO(Enhanced Particle Swarm Optimization)を微調整して、ネットワーク違反を効果的に検出する能力を実証した。
論文 参考訳(メタデータ) (2024-08-14T17:11:36Z) - Multi-agent Reinforcement Learning-based Network Intrusion Detection System [3.4636217357968904]
侵入検知システム(IDS)は,コンピュータネットワークのセキュリティ確保において重要な役割を担っている。
本稿では,自動,効率的,堅牢なネットワーク侵入検出が可能な,新しいマルチエージェント強化学習(RL)アーキテクチャを提案する。
我々のソリューションは、新しい攻撃の追加に対応し、既存の攻撃パターンの変更に効果的に適応するように設計されたレジリエントなアーキテクチャを導入します。
論文 参考訳(メタデータ) (2024-07-08T09:18:59Z) - Transfer Learning in Pre-Trained Large Language Models for Malware Detection Based on System Calls [3.5698678013121334]
本研究は,システムコールデータに基づいてマルウェアを分類するために,大規模言語モデル(LLM)を利用した新しいフレームワークを提案する。
1TBを超えるシステムコールのデータセットによる実験では、BigBirdやLongformerのようなより大きなコンテキストサイズを持つモデルの方が精度が良く、F1スコアは約0.86である。
このアプローチは、ハイテイク環境におけるリアルタイム検出の大きな可能性を示し、サイバー脅威の進化に対する堅牢なソリューションを提供する。
論文 参考訳(メタデータ) (2024-05-15T13:19:43Z) - Leveraging LSTM and GAN for Modern Malware Detection [0.4799822253865054]
本稿では,マルウェア検出精度と速度を向上するために,ディープラーニングモデル,LSTMネットワーク,GAN分類器の利用を提案する。
研究結果は98%の精度で行われ、ディープラーニングの効率が積極的なサイバーセキュリティ防衛において決定的な役割を担っていることを示している。
論文 参考訳(メタデータ) (2024-05-07T14:57:24Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - To Err is Machine: Vulnerability Detection Challenges LLM Reasoning [8.602355712876815]
脆弱性検出という,困難なコード推論タスクを提示する。
最新のSOTA(State-of-the-art)モデルでは,脆弱性検出評価では54.5%のバランスド精度しか報告されていない。
脆弱性検出を克服するためには、新しいモデル、新しいトレーニング方法、あるいはもっと実行固有の事前トレーニングデータが必要になるかもしれない。
論文 参考訳(メタデータ) (2024-03-25T21:47:36Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Cassandra: Detecting Trojaned Networks from Adversarial Perturbations [92.43879594465422]
多くの場合、事前トレーニングされたモデルは、トロイの木馬の振る舞いをモデルに挿入するためにトレーニングパイプラインを中断したかもしれないベンダーから派生している。
本稿では,事前学習したモデルがトロイの木馬か良馬かを検証する手法を提案する。
本手法は,ニューラルネットワークの指紋を,ネットワーク勾配から学習した逆方向の摂動の形でキャプチャする。
論文 参考訳(メタデータ) (2020-07-28T19:00:40Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
ディープラーニングモデルは、トロイの木馬攻撃に対して脆弱で、攻撃者はトレーニング中にバックドアをインストールして、結果のモデルが小さなトリガーパッチで汚染されたサンプルを誤識別させる。
本稿では,ラベル数と計算複雑性が一致しない新たなトリガリバースエンジニアリング手法を提案する。
実験では,提案手法が純モデルからトロイの木馬モデルを分離する際の完全なスコアを達成できることが観察された。
論文 参考訳(メタデータ) (2020-06-10T04:12:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。