LeForecast: Enterprise Hybrid Forecast by Time Series Intelligence
- URL: http://arxiv.org/abs/2503.22747v1
- Date: Thu, 27 Mar 2025 02:58:06 GMT
- Title: LeForecast: Enterprise Hybrid Forecast by Time Series Intelligence
- Authors: Zheng Tan, Yiwen Nie, Wenfa Wu, Guanyu Zhang, Yanze Liu, Xinyuan Tian, Kailin Gao, Mengya Liu, Qijiang Cheng, Haipeng Jiang, Yingzheng Ma, Wei Zheng, Yuci Zhu, Yuanyuan Sun, Xiangyu Lei, Xiyu Guan, Wanqing Huang, Shouming Liu, Xiangquan Meng, Pengzhan Qu, Chao Yang, Jiaxuan Fan, Yuan He, Hongsheng Qi, Yangzhou Du,
- Abstract summary: LeForecast is an enterprise intelligence platform tailored for time series tasks.<n>It integrates advanced interpretations of time series data and multi-source information, and a three-pillar modelling engine.<n>This work reviews deployment of LeForecast and its performance in three industrial use cases.
- Score: 10.203492575046015
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Demand is spiking in industrial fields for multidisciplinary forecasting, where a broad spectrum of sectors needs planning and forecasts to streamline intelligent business management, such as demand forecasting, product planning, inventory optimization, etc. Specifically, these tasks expecting intelligent approaches to learn from sequentially collected historical data and then foresee most possible trend, i.e. time series forecasting. Challenge of it lies in interpreting complex business contexts and the efficiency and generalisation of modelling. With aspirations of pre-trained foundational models for such purpose, given their remarkable success of large foundation model across legions of tasks, we disseminate \leforecast{}, an enterprise intelligence platform tailored for time series tasks. It integrates advanced interpretations of time series data and multi-source information, and a three-pillar modelling engine combining a large foundation model (Le-TSFM), multimodal model and hybrid model to derive insights, predict or infer futures, and then drive optimisation across multiple sectors in enterprise operations. The framework is composed by a model pool, model profiling module, and two different fusion approaches regarding original model architectures. Experimental results verify the efficiency of our trail fusion concepts: router-based fusion network and coordination of large and small models, resulting in high costs for redundant development and maintenance of models. This work reviews deployment of LeForecast and its performance in three industrial use cases. Our comprehensive experiments indicate that LeForecast is a profound and practical platform for efficient and competitive performance. And we do hope that this work can enlighten the research and grounding of time series techniques in accelerating enterprise.
Related papers
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
We propose a novel framework, Collaborative Ensemble Training Network (CETNet), to leverage multiple distinct models.
Unlike naive model scaling, our approach emphasizes diversity and collaboration through collaborative learning.
We validate our framework on three public datasets and a large-scale industrial dataset from Meta.
arXiv Detail & Related papers (2024-11-20T20:38:56Z) - FlowScope: Enhancing Decision Making by Time Series Forecasting based on Prediction Optimization using HybridFlow Forecast Framework [0.0]
Time series forecasting is crucial in several sectors, such as meteorology, retail, healthcare, and finance.
We propose FlowScope which offers a versatile and robust platform for predicting time series data.
This empowers enterprises to make informed decisions and optimize long-term strategies for maximum performance.
arXiv Detail & Related papers (2024-11-16T06:25:30Z) - Data-Juicer Sandbox: A Feedback-Driven Suite for Multimodal Data-Model Co-development [67.55944651679864]
We present a new sandbox suite tailored for integrated data-model co-development.<n>This sandbox provides a feedback-driven experimental platform, enabling cost-effective and guided refinement of both data and models.
arXiv Detail & Related papers (2024-07-16T14:40:07Z) - LTSM-Bundle: A Toolbox and Benchmark on Large Language Models for Time Series Forecasting [69.33802286580786]
We introduce LTSM-Bundle, a comprehensive toolbox, and benchmark for training LTSMs.
It modularized and benchmarked LTSMs from multiple dimensions, encompassing prompting strategies, tokenization approaches, base model selection, data quantity, and dataset diversity.
Empirical results demonstrate that this combination achieves superior zero-shot and few-shot performances compared to state-of-the-art LTSMs and traditional TSF methods.
arXiv Detail & Related papers (2024-06-20T07:09:19Z) - A Survey on Diffusion Models for Time Series and Spatio-Temporal Data [92.1255811066468]
We review the use of diffusion models in time series and S-temporal data, categorizing them by model, task type, data modality, and practical application domain.
We categorize diffusion models into unconditioned and conditioned types discuss time series and S-temporal data separately.
Our survey covers their application extensively in various fields including healthcare, recommendation, climate, energy, audio, and transportation.
arXiv Detail & Related papers (2024-04-29T17:19:40Z) - A Two-Phase Recall-and-Select Framework for Fast Model Selection [13.385915962994806]
We propose a two-phase (coarse-recall and fine-selection) model selection framework.
It aims to enhance the efficiency of selecting a robust model by leveraging the models' training performances on benchmark datasets.
It has been demonstrated that the proposed methodology facilitates the selection of a high-performing model at a rate about 3x times faster than conventional baseline methods.
arXiv Detail & Related papers (2024-03-28T14:44:44Z) - TSPP: A Unified Benchmarking Tool for Time-series Forecasting [3.5415344166235534]
We propose a unified benchmarking framework that exposes the crucial modelling and machine learning decisions involved in developing time series forecasting models.
This framework fosters seamless integration of models and datasets, aiding both practitioners and researchers in their development efforts.
We benchmark recently proposed models within this framework, demonstrating that carefully implemented deep learning models with minimal effort can rival gradient-boosting decision trees.
arXiv Detail & Related papers (2023-12-28T16:23:58Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.