論文の概要: VGRP-Bench: Visual Grid Reasoning Puzzle Benchmark for Large Vision-Language Models
- arxiv url: http://arxiv.org/abs/2503.23064v1
- Date: Sat, 29 Mar 2025 12:50:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 19:35:56.918745
- Title: VGRP-Bench: Visual Grid Reasoning Puzzle Benchmark for Large Vision-Language Models
- Title(参考訳): VGRP-Bench: 大規模ビジョンランゲージモデルのための視覚グリッド推論パズルベンチマーク
- Authors: Yufan Ren, Konstantinos Tertikas, Shalini Maiti, Junlin Han, Tong Zhang, Sabine Süsstrunk, Filippos Kokkinos,
- Abstract要約: LVLM(Large Vision-Language Models)は、正確な認識、ルール理解、論理的推論を必要とするパズルと競合する。
VGRP-Benchは、20種類のパズルを特徴とするVisual Grid Reasoning Puzzle Benchmarkである。
以上の結果から,現在最先端のLVLMでさえこれらのパズルに苦戦していることが明らかとなり,パズル解法の基本的限界が浮き彫りになった。
- 参考スコア(独自算出の注目度): 31.645103181716678
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Vision-Language Models (LVLMs) struggle with puzzles, which require precise perception, rule comprehension, and logical reasoning. Assessing and enhancing their performance in this domain is crucial, as it reflects their ability to engage in structured reasoning - an essential skill for real-world problem-solving. However, existing benchmarks primarily evaluate pre-trained models without additional training or fine-tuning, often lack a dedicated focus on reasoning, and fail to establish a systematic evaluation framework. To address these limitations, we introduce VGRP-Bench, a Visual Grid Reasoning Puzzle Benchmark featuring 20 diverse puzzles. VGRP-Bench spans multiple difficulty levels, and includes extensive experiments not only on existing chat LVLMs (e.g., GPT-4o), but also on reasoning LVLMs (e.g., Gemini-Thinking). Our results reveal that even the state-of-the-art LVLMs struggle with these puzzles, highlighting fundamental limitations in their puzzle-solving capabilities. Most importantly, through systematic experiments, we identify and analyze key factors influencing LVLMs' puzzle-solving performance, including the number of clues, grid size, and rule complexity. Furthermore, we explore two Supervised Fine-Tuning (SFT) strategies that can be used in post-training: SFT on solutions (S-SFT) and SFT on synthetic reasoning processes (R-SFT). While both methods significantly improve performance on trained puzzles, they exhibit limited generalization to unseen ones. We will release VGRP-Bench to facilitate further research on LVLMs for complex, real-world problem-solving.
- Abstract(参考訳): LVLM(Large Vision-Language Models)は、正確な認識、ルール理解、論理的推論を必要とするパズルと競合する。
この領域におけるパフォーマンスの評価と向上は、構造化推論(実世界の問題解決に不可欠なスキル)に携わる能力を反映しているため、非常に重要です。
しかし、既存のベンチマークは、トレーニングや微調整を伴わずにトレーニング済みのモデルを主に評価し、推論に集中せず、体系的な評価フレームワークを確立できないことが多い。
これらの制限に対処するために、20種類のパズルを特徴とするVisual Grid Reasoning Puzzle BenchmarkであるVGRP-Benchを紹介します。
VGRP-Benchは複数の難易度にまたがっており、既存のチャットLVLM(eg , GPT-4o)だけでなく、LVLM(eg , Gemini-Thinking)の推論にも広範な実験が含まれている。
以上の結果から,現在最先端のLVLMでさえこれらのパズルに苦戦していることが明らかとなり,パズル解法の基本的限界が浮き彫りになった。
最も重要なことは、系統的な実験を通じて、LVLMのパズル解決性能に影響を及ぼす重要な要因を特定し、分析することである。
さらに,SFT on Solution (S-SFT) と SFT on synthetic reasoning process (R-SFT) の2つの方法を検討した。
どちらの手法も訓練されたパズルの性能を著しく向上させるが、見当たらないパズルには限定的な一般化を示す。
我々は,複雑な実世界の問題解決のためのLVLMのさらなる研究を促進するために,VGRP-Benchをリリースする。
関連論文リスト
- VisualPuzzles: Decoupling Multimodal Reasoning Evaluation from Domain Knowledge [45.20691825097646]
私たちはビジュアル推論をターゲットとしたベンチマークであるVisualPuzzlesを紹介します。
VisualPuzzlesは5つのカテゴリにまたがる多様な質問で構成されている。
論文 参考訳(メタデータ) (2025-04-14T15:50:39Z) - ERL-MPP: Evolutionary Reinforcement Learning with Multi-head Puzzle Perception for Solving Large-scale Jigsaw Puzzles of Eroded Gaps [28.009783235854584]
マルチヘッド・プッフル・パーセプションを用いた進化的強化学習の枠組みを提案する。
提案したERL-MPPは、大きなギャップを持つJPLEG-5データセットと大規模なパズルを持つMITデータセットで評価される。
両方のデータセットのすべての最先端モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2025-04-13T14:56:41Z) - Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1 [53.894789613838654]
ビデオ理解におけるMLLMのポストトレーニング手法を評価するためのベンチマークであるSEED-Bench-R1を紹介する。
複雑な現実世界のビデオや、複数の質問の形式での複雑な日常的な計画タスクも含んでいる。
Qwen2-VL-Instruct-7Bをベースモデルとして、RLと教師付き微調整(SFT)を比較した。
我々の詳細な分析では、RLは視覚知覚を増強するが、しばしばコヒーレント推論連鎖を減少させる。
論文 参考訳(メタデータ) (2025-03-31T17:55:23Z) - CrossWordBench: Evaluating the Reasoning Capabilities of LLMs and LVLMs with Controllable Puzzle Generation [53.452699232071495]
CrossWordBenchは、大きな言語モデル(LLM)とLVLM(Large Vision-Language Models)の推論能力を評価するために設計されたベンチマークである。
評価の結果,LLMの推論は,クロスレター制約を効果的に活用することにより,非推論モデルよりも大幅に優れていることがわかった。
本研究は,現在のLLMとLVLMの推論能力の限界について考察し,今後の評価のために,マルチモーダル制約タスクを作成するための効果的なアプローチを提供する。
論文 参考訳(メタデータ) (2025-03-30T20:03:36Z) - LEGO-Puzzles: How Good Are MLLMs at Multi-Step Spatial Reasoning? [23.90259639381836]
LEGO-Puzzlesは、11の異なるタスクにまたがる1,100の精巧にキュレートされた視覚的質問応答(VQA)サンプルで構成されている。
最も強力なMLLMでさえ、テストケースの約半分しか答えられません。
VQAタスクに加えて,組み立て図に続くLEGO画像を生成するMLLMの能力を評価する。
論文 参考訳(メタデータ) (2025-03-25T18:21:07Z) - OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement [91.88062410741833]
本研究では,類似の推論機能を大規模視覚言語モデル(LVLM)にうまく組み込むことができるか検討する。
本稿では,教師付き微調整(SFT)と強化学習(RL)を反復的に活用し,モデル一般化をさらに改善する手法を検討する。
OpenVLThinkerは、MathVista、MathVerse、MathVisionといった挑戦的なベンチマークで一貫して改善された推論性能を示すLVLMである。
論文 参考訳(メタデータ) (2025-03-21T17:52:43Z) - FINEREASON: Evaluating and Improving LLMs' Deliberate Reasoning through Reflective Puzzle Solving [90.88021670297664]
FINEREASONは、大規模言語モデルの推論能力を評価するための論理パズルベンチマークである。
状態チェックと状態遷移という2つのタスクを導入し、モデルが現在の状況をどのように評価するかを総合的に評価し、次の動きを計画する。
状態チェックと遷移データに基づいてトレーニングされたモデルでは、GSM8Kで最大5.1%の精度で数学推論が向上することを示す。
論文 参考訳(メタデータ) (2025-02-27T16:23:25Z) - TextGames: Learning to Self-Play Text-Based Puzzle Games via Language Model Reasoning [26.680686158061192]
推論は大規模言語モデル(LLM)の基本機能である
本稿では,テキストベースのゲームで LLM を評価するためのベンチマークである TextGames を紹介する。
以上の結果から,LSMは最も容易かつ中程度の問題に対処する能力を示すが,より困難な課題に直面することが明らかとなった。
論文 参考訳(メタデータ) (2025-02-25T18:26:48Z) - VisFactor: Benchmarking Fundamental Visual Cognition in Multimodal Large Language Models [62.667142971664575]
因子関連認知テスト(FRCT)から得られた新しいベンチマークであるVisFactorを紹介する。
VisFactorは視覚関連FRCTサブテストのデジタル化を行い、基本的な視覚認知タスク間でMLLMを体系的に評価する。
GPT-4o, Gemini-Pro, Qwen-VLなどの最先端MLLMの総合評価を行った。
論文 参考訳(メタデータ) (2025-02-23T04:21:32Z) - ZebraLogic: On the Scaling Limits of LLMs for Logical Reasoning [92.76959707441954]
我々はLLM推論性能を評価するための総合的な評価フレームワークであるZebraLogicを紹介した。
ZebraLogicは、制御可能で定量化可能な複雑さを持つパズルの生成を可能にする。
その結果,複雑性が増大するにつれて,精度が著しく低下することが明らかとなった。
論文 参考訳(メタデータ) (2025-02-03T06:44:49Z) - DRIVINGVQA: Analyzing Visual Chain-of-Thought Reasoning of Vision Language Models in Real-World Scenarios with Driving Theory Tests [69.00444996464662]
本稿では、複雑な実世界のシナリオにおける視覚的連鎖推論を評価するために、駆動理論テストから得られた新しいベンチマークであるDrivingVQAを提案する。
実験の結果,オープンソースおよびプロプライエタリなLVLMは,ゼロショット設定下での視覚的連鎖推論に苦慮していることがわかった。
視覚的推論を改善するために関連エンティティを活用するトレーニング戦略について検討する。
論文 参考訳(メタデータ) (2025-01-08T18:31:16Z) - Beyond Outcomes: Transparent Assessment of LLM Reasoning in Games [54.49589494014147]
GAMEBoTは、大規模言語モデルの厳格な評価のために設計されたゲームアリーナである。
我々は,8つのゲームにまたがる17の卓越したLSMをベンチマークし,様々な戦略能力とゲーム特性について検討した。
以上の結果から,LDMに詳細なCoTプロンプトが付与されている場合でも,GAMEBoTは大きな課題となることが示唆された。
論文 参考訳(メタデータ) (2024-12-18T08:32:53Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - Puzzle Solving using Reasoning of Large Language Models: A Survey [1.9939549451457024]
本稿では,Large Language Models (LLMs) のパズル解法における能力について検討する。
以上の結果から,LLM能力と人為的推論の相違が明らかとなった。
この調査は、LLMのパズル解決能力を向上させるために、新しい戦略とよりリッチなデータセットの必要性を浮き彫りにした。
論文 参考訳(メタデータ) (2024-02-17T14:19:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。