Neural Bayes inference for complex bivariate extremal dependence models
- URL: http://arxiv.org/abs/2503.23156v1
- Date: Sat, 29 Mar 2025 17:24:48 GMT
- Title: Neural Bayes inference for complex bivariate extremal dependence models
- Authors: Lídia M. André, Jennifer L. Wadsworth, Raphaël Huser,
- Abstract summary: Likelihood-free approaches are appealing for performing inference on complex dependence models.<n>We focus on approaches that leverage neural networks to approximate Bayes estimators.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Likelihood-free approaches are appealing for performing inference on complex dependence models, either because it is not possible to formulate a likelihood function, or its evaluation is very computationally costly. This is the case for several models available in the multivariate extremes literature, particularly for the most flexible tail models, including those that interpolate between the two key dependence classes of `asymptotic dependence' and `asymptotic independence'. We focus on approaches that leverage neural networks to approximate Bayes estimators. In particular, we explore the properties of neural Bayes estimators for parameter inference for several flexible but computationally expensive models to fit, with a view to aiding their routine implementation. Owing to the absence of likelihood evaluation in the inference procedure, classical information criteria such as the Bayesian information criterion cannot be used to select the most appropriate model. Instead, we propose using neural networks as neural Bayes classifiers for model selection. Our goal is to provide a toolbox for simple, fast fitting and comparison of complex extreme-value dependence models, where the best model is selected for a given data set and its parameters subsequently estimated using neural Bayes estimation. We apply our classifiers and estimators to analyse the pairwise extremal behaviour of changes in horizontal geomagnetic field fluctuations at three different locations.
Related papers
- Inverse decision-making using neural amortized Bayesian actors [19.128377007314317]
We amortize the Bayesian actor using a neural network trained on a wide range of parameter settings in an unsupervised fashion.
We show how our method allows for principled model comparison and how it can be used to disentangle factors that may lead to unidentifiabilities between priors and costs.
arXiv Detail & Related papers (2024-09-04T10:31:35Z) - Latent Variable Sequence Identification for Cognitive Models with Neural Network Estimators [7.7227297059345466]
We present an approach that extends neural Bayes estimation to learn a direct mapping between experimental data and the targeted latent variable space.<n>Our work underscores that combining recurrent neural networks and simulation-based inference to identify latent variable sequences can enable researchers to access a wider class of cognitive models.
arXiv Detail & Related papers (2024-06-20T21:13:39Z) - Sensitivity-Aware Amortized Bayesian Inference [8.753065246797561]
Sensitivity analyses reveal the influence of various modeling choices on the outcomes of statistical analyses.
We propose sensitivity-aware amortized Bayesian inference (SA-ABI), a multifaceted approach to integrate sensitivity analyses into simulation-based inference with neural networks.
We demonstrate the effectiveness of our method in applied modeling problems, ranging from disease outbreak dynamics and global warming thresholds to human decision-making.
arXiv Detail & Related papers (2023-10-17T10:14:10Z) - Bayesian Neural Network Inference via Implicit Models and the Posterior
Predictive Distribution [0.8122270502556371]
We propose a novel approach to perform approximate Bayesian inference in complex models such as Bayesian neural networks.
The approach is more scalable to large data than Markov Chain Monte Carlo.
We see this being useful in applications such as surrogate and physics-based models.
arXiv Detail & Related papers (2022-09-06T02:43:19Z) - A Statistical-Modelling Approach to Feedforward Neural Network Model Selection [0.8287206589886881]
Feedforward neural networks (FNNs) can be viewed as non-linear regression models.
A novel model selection method is proposed using the Bayesian information criterion (BIC) for FNNs.
The choice of BIC over out-of-sample performance leads to an increased probability of recovering the true model.
arXiv Detail & Related papers (2022-07-09T11:07:04Z) - Nonparametric likelihood-free inference with Jensen-Shannon divergence
for simulator-based models with categorical output [1.4298334143083322]
Likelihood-free inference for simulator-based statistical models has attracted a surge of interest, both in the machine learning and statistics communities.
Here we derive a set of theoretical results to enable estimation, hypothesis testing and construction of confidence intervals for model parameters using computation properties of the Jensen-Shannon- divergence.
Such approximation offers a rapid alternative to more-intensive approaches and can be attractive for diverse applications of simulator-based models.
arXiv Detail & Related papers (2022-05-22T18:00:13Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
Canonical Correlation Analysis (CCA) is a method for feature extraction of two views by finding maximally correlated linear projections of them.
We introduce a novel dynamic scaling method for training an input-dependent canonical correlation model.
arXiv Detail & Related papers (2022-03-23T12:52:49Z) - Instance-Based Neural Dependency Parsing [56.63500180843504]
We develop neural models that possess an interpretable inference process for dependency parsing.
Our models adopt instance-based inference, where dependency edges are extracted and labeled by comparing them to edges in a training set.
arXiv Detail & Related papers (2021-09-28T05:30:52Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Bayesian Sparse Factor Analysis with Kernelized Observations [67.60224656603823]
Multi-view problems can be faced with latent variable models.
High-dimensionality and non-linear issues are traditionally handled by kernel methods.
We propose merging both approaches into single model.
arXiv Detail & Related papers (2020-06-01T14:25:38Z) - Amortized Bayesian Inference for Models of Cognition [0.1529342790344802]
Recent advances in simulation-based inference using specialized neural network architectures circumvent many previous problems of approximate Bayesian computation.
We provide a general introduction to amortized Bayesian parameter estimation and model comparison.
arXiv Detail & Related papers (2020-05-08T08:12:15Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
We show that a posterior approximation distinct from the variational distribution should be used for making decisions.
Motivated by these theoretical results, we propose learning several approximate proposals for the best model.
In addition to toy examples, we present a full-fledged case study of single-cell RNA sequencing.
arXiv Detail & Related papers (2020-02-17T19:23:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.