論文の概要: Context in object detection: a systematic literature review
- arxiv url: http://arxiv.org/abs/2503.23249v1
- Date: Sat, 29 Mar 2025 23:21:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:35:54.030107
- Title: Context in object detection: a systematic literature review
- Title(参考訳): 物体検出における文脈 : 体系的文献レビュー
- Authors: Mahtab Jamali, Paul Davidsson, Reza Khoshkangini, Martin Georg Ljungqvist, Radu-Casian Mihailescu,
- Abstract要約: 本研究では,オブジェクト検出に対するコンテキストベースアプローチの影響について検討する。
この調査には265以上の出版物が含まれており、対象検出の異なるカテゴリにおけるコンテキストの異なる側面をカバーしている。
- 参考スコア(独自算出の注目度): 1.0310977366592338
- License:
- Abstract: Context is an important factor in computer vision as it offers valuable information to clarify and analyze visual data. Utilizing the contextual information inherent in an image or a video can improve the precision and effectiveness of object detectors. For example, where recognizing an isolated object might be challenging, context information can improve comprehension of the scene. This study explores the impact of various context-based approaches to object detection. Initially, we investigate the role of context in object detection and survey it from several perspectives. We then review and discuss the most recent context-based object detection approaches and compare them. Finally, we conclude by addressing research questions and identifying gaps for further studies. More than 265 publications are included in this survey, covering different aspects of context in different categories of object detection, including general object detection, video object detection, small object detection, camouflaged object detection, zero-shot, one-shot, and few-shot object detection. This literature review presents a comprehensive overview of the latest advancements in context-based object detection, providing valuable contributions such as a thorough understanding of contextual information and effective methods for integrating various context types into object detection, thus benefiting researchers.
- Abstract(参考訳): コンテキストは、視覚データを明確にし分析するための貴重な情報を提供するため、コンピュータビジョンにおいて重要な要素である。
画像やビデオに固有のコンテキスト情報を利用することで、オブジェクト検出器の精度と有効性を向上させることができる。
例えば、孤立したオブジェクトを認識するのが難しい場合、コンテキスト情報はシーンの理解を改善することができる。
本研究では,オブジェクト検出に対するコンテキストベースアプローチの影響について検討する。
当初,対象検出における文脈の役割について検討し,いくつかの観点から検討した。
次に、最新のコンテキストベースのオブジェクト検出手法をレビューし、議論し、比較する。
最後に、研究課題に対処し、さらなる研究のためのギャップを特定することで結論付ける。
この調査には265以上の出版物が含まれており、一般的なオブジェクト検出、ビデオオブジェクト検出、小さなオブジェクト検出、カモフラージュされたオブジェクト検出、ゼロショット、ワンショット、少数ショットオブジェクト検出など、さまざまな種類のオブジェクト検出のコンテキストの異なる側面をカバーしている。
本報告では, コンテキストに基づくオブジェクト検出の最近の進歩を概観し, コンテキスト情報の理解や, 様々なコンテキストタイプをオブジェクト検出に統合するための効果的な手法など, 研究者の利益をもたらす。
関連論文リスト
- The devil is in the fine-grained details: Evaluating open-vocabulary object detectors for fine-grained understanding [8.448399308205266]
本研究では,動的語彙生成に基づく評価プロトコルを導入し,モデルがオブジェクトに対して正確な粒度記述を検出し,識別し,割り当てるかどうかを検証する。
提案プロトコルを用いて,最先端のオープンボキャブラリオブジェクト検出器を複数評価することにより,研究をさらに強化する。
論文 参考訳(メタデータ) (2023-11-29T10:40:52Z) - Contextual Object Detection with Multimodal Large Language Models [66.15566719178327]
本稿では,コンテキストオブジェクト検出の新たな研究課題について紹介する。
言語クローゼテスト,視覚キャプション,質問応答の3つの代表的なシナリオについて検討した。
本稿では、視覚的コンテキストのエンドツーエンドの微分可能なモデリングが可能な統合マルチモーダルモデルContextDETを提案する。
論文 参考訳(メタデータ) (2023-05-29T17:50:33Z) - A Comprehensive Study on Object Detection Techniques in Unconstrained
Environments [0.0]
オブジェクト検出は、画像やビデオ内のオブジェクトを識別し、ローカライズすることを目的とした、コンピュータビジョンにおける重要なタスクである。
近年のディープラーニングと畳み込みニューラルネットワーク(CNN)の進歩により、オブジェクト検出技術の性能が大幅に向上した。
本稿では,制約のない環境下でのオブジェクト検出技術について,様々な課題,データセット,最先端のアプローチを含む包括的研究を行う。
論文 参考訳(メタデータ) (2023-04-11T15:45:03Z) - Oriented Object Detection in Optical Remote Sensing Images using Deep Learning: A Survey [10.665235711722076]
オブジェクト指向物体検出は、リモートセンシングにおいて最も基本的で困難なタスクの1つである。
近年,ディープラーニング技術を用いたオブジェクト指向物体検出の進歩が目覚ましい。
論文 参考訳(メタデータ) (2023-02-21T06:31:53Z) - Robust Region Feature Synthesizer for Zero-Shot Object Detection [87.79902339984142]
我々は,クラス内セマンティック・ディバージングコンポーネントとクラス間構造保存コンポーネントを含む,新しいゼロショットオブジェクト検出フレームワークを構築した。
リモートセンシング画像においてゼロショット物体検出を行う最初の研究である。
論文 参考訳(メタデータ) (2022-01-01T03:09:15Z) - Contrastive Object Detection Using Knowledge Graph Embeddings [72.17159795485915]
一つのホットアプローチで学習したクラス埋め込みの誤差統計と、自然言語処理や知識グラフから意味的に構造化された埋め込みを比較した。
本稿では,キーポイントベースおよびトランスフォーマーベースオブジェクト検出アーキテクチャの知識埋め込み設計を提案する。
論文 参考訳(メタデータ) (2021-12-21T17:10:21Z) - Class-agnostic Object Detection [16.97782147401037]
本稿では,オブジェクトのクラスに関係なくオブジェクトを検出することに焦点を当てた新しい問題として,クラスに依存しないオブジェクト検出を提案する。
具体的には、イメージ内のすべてのオブジェクトのバウンディングボックスを予測することであり、オブジェクトクラスではない。
本稿では,この領域における今後の研究を進めるために,クラス非依存検出器のベンチマークのためのトレーニングおよび評価プロトコルを提案する。
論文 参考訳(メタデータ) (2020-11-28T19:22:38Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
本稿では,超高アスペクト比,すなわちtextbfslender オブジェクトの特定タイプの検出について検討する。
古典的物体検出法では、細い物体に対してのみ評価される場合、COCO上の18.9%のmAPの劇的な低下が観察される。
論文 参考訳(メタデータ) (2020-11-17T09:39:42Z) - Learning Object Detection from Captions via Textual Scene Attributes [70.90708863394902]
キャプションには、オブジェクトの属性やそれらの関係など、画像に関するよりリッチな情報が含まれている、と我々は主張する。
本稿では,この「テキストシーングラフ」の属性を用いて物体検知器を訓練する手法を提案する。
得られたモデルが、いくつかの挑戦的なオブジェクト検出データセットに対して、最先端の結果を達成することを実証的に実証した。
論文 参考訳(メタデータ) (2020-09-30T10:59:20Z) - COBE: Contextualized Object Embeddings from Narrated Instructional Video [52.73710465010274]
そこで本稿では,教師ビデオの自動書き起こしからコンテキスト適応型オブジェクト埋め込みを学習するための新しいフレームワークを提案する。
言語の意味的・構成的構造を視覚的検知器を訓練し,オブジェクトとその関連するナレーションの文脈的単語埋め込みを予測する。
実験の結果,検出器は多種多様なコンテキストオブジェクト情報を予測し,少数ショットおよびゼロショット学習の設定において極めて有効であることがわかった。
論文 参考訳(メタデータ) (2020-07-14T19:04:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。