IBB Traffic Graph Data: Benchmarking and Road Traffic Prediction Model
- URL: http://arxiv.org/abs/2408.01016v1
- Date: Fri, 2 Aug 2024 05:23:19 GMT
- Title: IBB Traffic Graph Data: Benchmarking and Road Traffic Prediction Model
- Authors: Eren Olug, Kiymet Kaya, Resul Tugay, Sule Gunduz Oguducu,
- Abstract summary: Road traffic congestion prediction is a crucial component of intelligent transportation systems.
IBB Traffic graph dataset covers the sensor data collected at 2451 distinct locations.
We propose a novel Road Traffic Prediction Model that strengthens temporal links through feature engineering.
- Score: 0.24999074238880487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Road traffic congestion prediction is a crucial component of intelligent transportation systems, since it enables proactive traffic management, enhances suburban experience, reduces environmental impact, and improves overall safety and efficiency. Although there are several public datasets, especially for metropolitan areas, these datasets may not be applicable to practical scenarios due to insufficiency in the scale of data (i.e. number of sensors and road links) and several external factors like different characteristics of the target area such as urban, highways and the data collection location. To address this, this paper introduces a novel IBB Traffic graph dataset as an alternative benchmark dataset to mitigate these limitations and enrich the literature with new geographical characteristics. IBB Traffic graph dataset covers the sensor data collected at 2451 distinct locations. Moreover, we propose a novel Road Traffic Prediction Model that strengthens temporal links through feature engineering, node embedding with GLEE to represent inter-related relationships within the traffic network, and traffic prediction with ExtraTrees. The results indicate that the proposed model consistently outperforms the baseline models, demonstrating an average accuracy improvement of 4%.
Related papers
- Interaction Dataset of Autonomous Vehicles with Traffic Lights and Signs [11.127555705122283]
This paper presents the development of a comprehensive dataset capturing interactions between Autonomous Vehicles (AVs) and traffic control devices, specifically traffic lights and stop signs.
Our work addresses a critical gap in the existing literature by providing real-world trajectory data on how AVs navigate these traffic control devices.
We propose a methodology for identifying and extracting relevant interaction trajectory data from the Motion dataset, incorporating over 37,000 instances with traffic lights and 44,000 with stop signs.
arXiv Detail & Related papers (2025-01-21T22:59:50Z) - Multi-Source Urban Traffic Flow Forecasting with Drone and Loop Detector Data [61.9426776237409]
Drone-captured data can create an accurate multi-sensor mobility observatory for large-scale urban networks.
A simple yet effective graph-based model HiMSNet is proposed to integrate multiple data modalities and learn-temporal correlations.
arXiv Detail & Related papers (2025-01-07T03:23:28Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Predicting Traffic Congestion at Urban Intersections Using Data-Driven Modeling [0.0]
This study aims to develop a predictive model for congestion at intersections in major U.S. cities.
The dataset encompasses 27 features, including coordinates, street names, time of day, and traffic metrics.
arXiv Detail & Related papers (2024-04-12T22:53:41Z) - MA2GCN: Multi Adjacency relationship Attention Graph Convolutional
Networks for Traffic Prediction using Trajectory data [1.147374308875151]
This paper proposes a new traffic congestion prediction model - Multi Adjacency relationship Attention Graph Convolutional Networks(MA2GCN)
It transformed vehicle trajectory data into graph structured data in grid form, and proposed a vehicle entry and exit matrix based on the mobility between different grids.
Compared with multiple baselines, our model achieved the best performance on Shanghai taxi GPS trajectory dataset.
arXiv Detail & Related papers (2024-01-16T14:22:44Z) - Cross-city Few-Shot Traffic Forecasting via Traffic Pattern Bank [15.123457772023238]
We propose a cross-city few-shot traffic forecasting framework via Traffic Pattern Bank (TPB)
TPB utilizes a pre-trained traffic patch encoder to project raw traffic data from data-rich cities into high-dimensional space.
An adjacency matrix is constructed to guide a downstream spatial-temporal model in forecasting future traffic.
arXiv Detail & Related papers (2023-08-17T13:29:57Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - STCGAT: Spatial-temporal causal networks for complex urban road traffic
flow prediction [12.223433627287605]
Traffic data are highly nonlinear and have complex spatial correlations between road nodes.
Existing approaches usually use fixed traffic road network topology maps and independent time series modules to capture Spatial-temporal correlations.
We propose a new prediction model which captures the spatial dependence of the traffic network through a Graph Attention Network(GAT) and then analyzes the causal relationship of the traffic data.
arXiv Detail & Related papers (2022-03-21T06:38:34Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.