Map Feature Perception Metric for Map Generation Quality Assessment and Loss Optimization
- URL: http://arxiv.org/abs/2503.23370v1
- Date: Sun, 30 Mar 2025 09:07:09 GMT
- Title: Map Feature Perception Metric for Map Generation Quality Assessment and Loss Optimization
- Authors: Chenxing Sun, Jing Bai,
- Abstract summary: This study introduces a novel Map Feature Metric designed to evaluate global characteristics and spatial congruence between synthesized and target maps.<n>Our approach extracts elemental-level deep features that comprehensively encode cartographic structural integrity and topological relationships.
- Score: 2.311323886036968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In intelligent cartographic generation tasks empowered by generative models, the authenticity of synthesized maps constitutes a critical determinant. Concurrently, the selection of appropriate evaluation metrics to quantify map authenticity emerges as a pivotal research challenge. Current methodologies predominantly adopt computer vision-based image assessment metrics to compute discrepancies between generated and reference maps. However, conventional visual similarity metrics-including L1, L2, SSIM, and FID-primarily operate at pixel-level comparisons, inadequately capturing cartographic global features and spatial correlations, consequently inducing semantic-structural artifacts in generated outputs. This study introduces a novel Map Feature Perception Metric designed to evaluate global characteristics and spatial congruence between synthesized and target maps. Diverging from pixel-wise metrics, our approach extracts elemental-level deep features that comprehensively encode cartographic structural integrity and topological relationships. Experimental validation demonstrates MFP's superior capability in evaluating cartographic semantic features, with classification-enhanced implementations outperforming conventional loss functions across diverse generative frameworks. When employed as optimization objectives, our metric achieves performance gains ranging from 2% to 50% across multiple benchmarks compared to traditional L1, L2, and SSIM baselines. This investigation concludes that explicit consideration of cartographic global attributes and spatial coherence substantially enhances generative model optimization, thereby significantly improving the geographical plausibility of synthesized maps.
Related papers
- EarthMapper: Visual Autoregressive Models for Controllable Bidirectional Satellite-Map Translation [50.433911327489554]
We introduce EarthMapper, a novel framework for controllable satellite-map translation.
We also contribute CNSatMap, a large-scale dataset comprising 302,132 precisely aligned satellite-map pairs across 38 Chinese cities.
experiments on CNSatMap and the New York dataset demonstrate EarthMapper's superior performance.
arXiv Detail & Related papers (2025-04-28T02:41:12Z) - Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
Topological correctness plays a critical role in many image segmentation tasks.
Most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy.
We propose a novel, graph-based framework for topologically accurate image segmentation.
arXiv Detail & Related papers (2024-11-05T16:20:14Z) - Two-Stage Hierarchical and Explainable Feature Selection Framework for Dimensionality Reduction in Sleep Staging [0.6216545676226375]
EEG signals play a significant role in sleep research.
Due to the high-dimensional nature of EEG signal data sequences, data visualization and clustering of different sleep stages have been challenges.
We propose a two-stage hierarchical and explainable feature selection framework by incorporating a feature selection algorithm to improve the performance of dimensionality reduction.
arXiv Detail & Related papers (2024-08-31T23:54:53Z) - A Refreshed Similarity-based Upsampler for Direct High-Ratio Feature Upsampling [54.05517338122698]
A popular similarity-based feature upsampling pipeline has been proposed, which utilizes a high-resolution feature as guidance.
We propose an explicitly controllable query-key feature alignment from both semantic-aware and detail-aware perspectives.
We develop a fine-grained neighbor selection strategy on HR features, which is simple yet effective for alleviating mosaic artifacts.
arXiv Detail & Related papers (2024-07-02T14:12:21Z) - Graph Vertex Embeddings: Distance, Regularization and Community Detection [0.0]
Graph embeddings have emerged as a powerful tool for representing complex network structures in a low-dimensional space.
We present a family of flexible distance functions that faithfully capture the topological distance between different vertices.
We evaluate the effectiveness of our proposed embedding constructions by performing community detection on a host of benchmark datasets.
arXiv Detail & Related papers (2024-04-09T09:03:53Z) - Scalable and Efficient Hierarchical Visual Topological Mapping [3.114470292106496]
We evaluate state-of-the-art hand-crafted and learned global descriptors using a hierarchical topological mapping technique.
Based on our empirical analysis of multiple runs, we identify that continuity and distinctiveness are crucial characteristics for an optimal global descriptor.
arXiv Detail & Related papers (2024-04-07T17:30:57Z) - Volumetric Semantically Consistent 3D Panoptic Mapping [77.13446499924977]
We introduce an online 2D-to-3D semantic instance mapping algorithm aimed at generating semantic 3D maps suitable for autonomous agents in unstructured environments.
It introduces novel ways of integrating semantic prediction confidence during mapping, producing semantic and instance-consistent 3D regions.
The proposed method achieves accuracy superior to the state of the art on public large-scale datasets, improving on a number of widely used metrics.
arXiv Detail & Related papers (2023-09-26T08:03:10Z) - Decom--CAM: Tell Me What You See, In Details! Feature-Level Interpretation via Decomposition Class Activation Map [23.71680014689873]
Class Activation Map (CAM) is widely used to interpret deep model predictions by highlighting object location.
This paper proposes a new two-stage interpretability method called the Decomposition Class Activation Map (Decom-CAM)
Our experiments demonstrate that the proposed Decom-CAM outperforms current state-of-the-art methods significantly.
arXiv Detail & Related papers (2023-05-27T14:33:01Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
This study presents an empirical investigation into the evaluation of synthesis performance, with generative adversarial networks (GANs) as a representative of generative models.
In particular, we make in-depth analyses of various factors, including how to represent a data point in the representation space, how to calculate a fair distance using selected samples, and how many instances to use from each set.
arXiv Detail & Related papers (2023-04-04T17:54:32Z) - Semantic Change Detection with Asymmetric Siamese Networks [71.28665116793138]
Given two aerial images, semantic change detection aims to locate the land-cover variations and identify their change types with pixel-wise boundaries.
This problem is vital in many earth vision related tasks, such as precise urban planning and natural resource management.
We present an asymmetric siamese network (ASN) to locate and identify semantic changes through feature pairs obtained from modules of widely different structures.
arXiv Detail & Related papers (2020-10-12T13:26:30Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
We present a novel Partial Feature Decorrelation Learning (PFDL) algorithm, which jointly optimize a feature decomposition network and the target image classification model.
The experiments on real-world datasets demonstrate that our method can improve the backbone model's accuracy on OOD image classification datasets.
arXiv Detail & Related papers (2020-07-30T05:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.