Spatiotemporal Learning of Brain Dynamics from fMRI Using Frequency-Specific Multi-Band Attention for Cognitive and Psychiatric Applications
- URL: http://arxiv.org/abs/2503.23394v2
- Date: Tue, 17 Jun 2025 14:03:59 GMT
- Title: Spatiotemporal Learning of Brain Dynamics from fMRI Using Frequency-Specific Multi-Band Attention for Cognitive and Psychiatric Applications
- Authors: Sangyoon Bae, Junbeom Kwon, Shinjae Yoo, Jiook Cha,
- Abstract summary: Multi-Band Net Brain (MBBN) is the first transformer-based framework to explicitly model frequency-specific brain dynamics.<n>Training on 49,673 individuals across three large-scale cohorts, MBBN sets a new state-of-the-art in predicting psychiatric and cognitive outcomes.
- Score: 5.199807441687141
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Understanding how the brain's complex nonlinear dynamics give rise to cognitive function remains a central challenge in neuroscience. While brain functional dynamics exhibits scale-free and multifractal properties across temporal scales, conventional neuroimaging analytics assume linearity and stationarity, failing to capture frequency-specific neural computations. Here, we introduce Multi-Band Brain Net (MBBN), the first transformer-based framework to explicitly model frequency-specific spatiotemporal brain dynamics from fMRI. MBBN integrates biologically-grounded frequency decomposition with multi-band self-attention mechanisms, enabling discovery of previously undetectable frequency-dependent network interactions. Trained on 49,673 individuals across three large-scale cohorts (UK Biobank, ABCD, ABIDE), MBBN sets a new state-of-the-art in predicting psychiatric and cognitive outcomes (depression, ADHD, ASD), showing particular strength in classification tasks with up to 52.5\% higher AUROC and provides a novel framework for predicting cognitive intelligence scores. Frequency-resolved analyses uncover disorder-specific signatures: in ADHD, high-frequency fronto-sensorimotor connectivity is attenuated and opercular somatosensory nodes emerge as dynamic hubs; in ASD, orbitofrontal-somatosensory circuits show focal high-frequency disruption together with enhanced ultra-low-frequency coupling between the temporo-parietal junction and prefrontal cortex. By integrating scale-aware neural dynamics with deep learning, MBBN delivers more accurate and interpretable biomarkers, opening avenues for precision psychiatry and developmental neuroscience.
Related papers
- NOBLE -- Neural Operator with Biologically-informed Latent Embeddings to Capture Experimental Variability in Biological Neuron Models [68.89389652724378]
NOBLE is a neural operator framework that learns a mapping from a continuous frequency-modulated embedding of interpretable neuron features to the somatic voltage response induced by current injection.<n>It predicts distributions of neural dynamics accounting for the intrinsic experimental variability.<n>NOBLE is the first scaled-up deep learning framework validated on real experimental data.
arXiv Detail & Related papers (2025-06-05T01:01:18Z) - ASD Classification on Dynamic Brain Connectome using Temporal Random Walk with Transformer-based Dynamic Network Embedding [1.6044444452278062]
We propose BrainTWT, a novel dynamic network embedding approach that captures temporal evolution of the brain connectivity over time.<n>The experimental evaluation, utilizing the Autism Brain Imaging Data Exchange (ABIDE) dataset, demonstrates that BrainTWT outperforms baseline methods in ASD classification.
arXiv Detail & Related papers (2025-03-16T05:44:11Z) - NeuroTree: Hierarchical Functional Brain Pathway Decoding for Mental Health Disorders [8.693515007203429]
We propose NeuroTree to overcome limitations of existing fMRI-based graph convolutional networks.<n>NeuroTree integrates a k-hop AGE-GCN with neural ordinary differential equations (ODEs) to optimize functional connectivity.<n>Our empirical evaluations demonstrate that NeuroTree achieves state-of-the-art performance across two distinct mental disorder datasets.
arXiv Detail & Related papers (2025-02-26T03:42:58Z) - Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
It has long been known in both neuroscience and AI that ''binding'' between neurons leads to a form of competitive learning.<n>We introduce Artificial rethinking together with arbitrary connectivity designs such as fully connected convolutional, or attentive mechanisms.<n>We show that this idea provides performance improvements across a wide spectrum of tasks such as unsupervised object discovery, adversarial robustness, uncertainty, and reasoning.
arXiv Detail & Related papers (2024-10-17T17:47:54Z) - Parsing altered brain connectivity in neurodevelopmental disorders by integrating graph-based normative modeling and deep generative networks [1.2115617129203957]
Quantifying divergence from neurotypical connectivity patterns offers a promising pathway to inform diagnosis and therapeutic interventions.
We present the Brain Representation via Individualized Deep Generative Embedding (BRIDGE) framework, which integrates normative modeling with a bio-inspired deep generative model.
BRIDGE provides a global neurodivergence score based on the difference between connectivity-based brain age and chronological age, along with region-wise neurodivergence maps that highlight localized connectivity differences.
arXiv Detail & Related papers (2024-10-14T20:21:11Z) - NeuroPath: A Neural Pathway Transformer for Joining the Dots of Human Connectomes [4.362614418491178]
We introduce the concept of topological detour to characterize how a ubiquitous instance of FC is supported by neural pathways (detour) physically wired by SC.
In the clich'e of machine learning, the multi-hop detour pathway underlying SC-FC coupling allows us to devise a novel multi-head self-attention mechanism.
We propose a biological-inspired deep model, coined as NeuroPath, to find putative connectomic feature representations from the unprecedented amount of neuroimages.
arXiv Detail & Related papers (2024-09-26T03:40:12Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Multi-Resolution Graph Analysis of Dynamic Brain Network for Classification of Alzheimer's Disease and Mild Cognitive Impairment [0.0]
Alzheimer's disease (AD) is a neurodegenerative disorder marked by memory loss and cognitive decline.<n>Traditional methods, such as Pearson's correlation, have been used to calculate association matrices.<n>We introduce a novel method that integrates discrete wavelet transform (DWT) and graph theory to model the dynamic behavior of brain networks.
arXiv Detail & Related papers (2024-09-06T07:26:14Z) - BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals [11.030708270737964]
We propose Brain Masked Auto-Encoder (BrainMAE) for learning representations directly from fMRI time-series data.
BrainMAE consistently outperforms established baseline methods by significant margins in four distinct downstream tasks.
arXiv Detail & Related papers (2024-06-24T19:16:24Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
We propose a novel model called BrainODE to achieve continuous modeling of dynamic brain signals.
By learning latent initial values and neural ODE functions from irregular time series, BrainODE effectively reconstructs brain signals at any time point.
arXiv Detail & Related papers (2024-04-30T10:53:30Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
We present a physiologically inspired speech recognition architecture compatible and scalable with deep learning frameworks.
We show end-to-end gradient descent training leads to the emergence of neural oscillations in the central spiking neural network.
Our findings highlight the crucial inhibitory role of feedback mechanisms, such as spike frequency adaptation and recurrent connections, in regulating and synchronising neural activity to improve recognition performance.
arXiv Detail & Related papers (2024-04-22T09:40:07Z) - Extracting the Multiscale Causal Backbone of Brain Dynamics [9.905883167156393]
We propose the multiscale causal backbone (MCB) of brain dynamics.
Our approach leverages recent advances in multiscale causal structure learning.
Thanks to its multiscale nature, causal dynamics are driven by brain regions associated with high-level cognitive functions.
arXiv Detail & Related papers (2023-10-31T19:47:11Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - A Deep Probabilistic Spatiotemporal Framework for Dynamic Graph Representation Learning with Application to Brain Disorder Identification [5.563162319586206]
Recent applications of pattern recognition techniques on brain connectome classification using functional connectivity (FC) are shifting towards acknowledging aspects of brain connectivity across time.
In this paper, a deep non-temporalal variation Bayes framework is proposed to learn to identify autism spectrum disorder (ASD) in human participants.
The framework incorporates a spatial-aware recurrent neural network with an attention-based message passing scheme to capture richtemporal patterns across dynamic FC networks.
arXiv Detail & Related papers (2023-02-14T18:42:17Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.