論文の概要: Intrinsically-Motivated Humans and Agents in Open-World Exploration
- arxiv url: http://arxiv.org/abs/2503.23631v1
- Date: Mon, 31 Mar 2025 00:09:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:36:23.769924
- Title: Intrinsically-Motivated Humans and Agents in Open-World Exploration
- Title(参考訳): オープンワールド探査における人間とエージェントの本質的動機づけ
- Authors: Aly Lidayan, Yuqing Du, Eliza Kosoy, Maria Rufova, Pieter Abbeel, Alison Gopnik,
- Abstract要約: 複雑なオープンエンド環境で、大人、子供、AIエージェントを比較します。
エントロピーとエンパワーメントだけが、人類の探査の進歩と一貫して正の相関関係にあることがわかった。
- 参考スコア(独自算出の注目度): 50.00331050937369
- License:
- Abstract: What drives exploration? Understanding intrinsic motivation is a long-standing challenge in both cognitive science and artificial intelligence; numerous objectives have been proposed and used to train agents, yet there remains a gap between human and agent exploration. We directly compare adults, children, and AI agents in a complex open-ended environment, Crafter, and study how common intrinsic objectives: Entropy, Information Gain, and Empowerment, relate to their behavior. We find that only Entropy and Empowerment are consistently positively correlated with human exploration progress, indicating that these objectives may better inform intrinsic reward design for agents. Furthermore, across agents and humans we observe that Entropy initially increases rapidly, then plateaus, while Empowerment increases continuously, suggesting that state diversity may provide more signal in early exploration, while advanced exploration should prioritize control. Finally, we find preliminary evidence that private speech utterances, and particularly goal verbalizations, may aid exploration in children.
- Abstract(参考訳): 探検の原動力は何か?
内在的モチベーションを理解することは、認知科学と人工知能の両方において長年にわたる課題であり、エージェントを訓練するために多くの目的が提案され、使用されているが、人間とエージェントの探索の間には差がある。
複雑なオープンエンド環境での大人、子供、AIエージェントを直接比較し、エントロピー、情報ゲイン、エンパワーメントといった、一般的な本質的な目的が彼らの行動にどのように関係しているかを研究する。
エントロピーとエンパワーメントだけが人間の探究の進展と常に正の相関を保ち、これらの目的がエージェントの本質的な報酬設計に影響を及ぼす可能性が示唆された。
さらに、エージェントや人間の間では、エントロピーは最初は急速に増加し、その後は台地が増加し、エンパワーメントは継続的に増加し、国家の多様性は早期の探査においてより多くのシグナルを与え、先進的な探査は制御を優先すべきであることを示唆している。
最後に,私的発話,特に目的語化が子どもの探索に有効であることを示す予備的証拠を見出した。
関連論文リスト
- QuadrupedGPT: Towards a Versatile Quadruped Agent in Open-ended Worlds [51.05639500325598]
ペットに匹敵するアジリティで多様なコマンドに従うように設計されたQuadrupedGPTを紹介します。
エージェントは多種多様なタスクを処理し,複雑な指示を行う能力を示し,多種多様四重化エージェントの開発に向けた重要な一歩である。
論文 参考訳(メタデータ) (2024-06-24T12:14:24Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Self-mediated exploration in artificial intelligence inspired by
cognitive psychology [1.3351610617039975]
物理環境の探索は、データ取得に必須の先駆者であり、分析的または直接的な試行を通じて知識生成を可能にする。
この研究は、人間の行動と人工エージェントを結び付け、自己開発を支援する。
その後の研究では、人工エージェントが収束に向けて繰り返し実施される以前のヒトの治験を反映するように設計されている。
その結果、ほとんどのエージェントが学んだ因果関係が、内部の状態と、人間に報告されたものと一致するための探索の間にあることが示された。
論文 参考訳(メタデータ) (2023-02-13T18:20:44Z) - Intrinsically Motivated Learning of Causal World Models [0.0]
有望な方向は、センサーと環境との相互作用の裏に隠された真の物理的なメカニズムを捉えた世界モデルを構築することである。
環境の因果構造を推定することは、適切な介入データを収集する手段として、適切なチョーセン行動の恩恵を受けることができる。
論文 参考訳(メタデータ) (2022-08-09T16:48:28Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
心理学的好奇心は、探索と情報取得を通じて学習を強化するために、人間の知性において重要な役割を果たす。
人工知能(AI)コミュニティでは、人工好奇心は効率的な学習に自然な本質的な動機を与える。
CDLはますます人気を博し、エージェントは新たな知識を学習するために自己動機付けされている。
論文 参考訳(メタデータ) (2022-01-20T17:07:03Z) - Information is Power: Intrinsic Control via Information Capture [110.3143711650806]
我々は,潜時状態空間モデルを用いて推定したエージェントの状態訪問のエントロピーを最小化する,コンパクトで汎用的な学習目的を論じる。
この目的は、不確実性の低減に対応する環境情報収集と、将来の世界状態の予測不可能性の低減に対応する環境制御の両方をエージェントに誘導する。
論文 参考訳(メタデータ) (2021-12-07T18:50:42Z) - Benchmarking the Spectrum of Agent Capabilities [7.088856621650764]
本稿では,1つの環境における幅広い汎用能力を評価する視覚入力を備えたオープンワールドサバイバルゲームであるCrafterを紹介する。
エージェントは提供された報酬信号や本質的な目的を通じて学習し、意味的に意味のある成果によって評価される。
我々は、Crafterが将来の研究を推進するのに適切な困難であることを実験的に検証し、報酬エージェントと教師なしエージェントのベースラインスコアを提供する。
論文 参考訳(メタデータ) (2021-09-14T15:49:31Z) - Improved Learning of Robot Manipulation Tasks via Tactile Intrinsic
Motivation [40.81570120196115]
スパースゴール設定では、エージェントはランダムに目標を達成するまで肯定的なフィードバックを受けません。
子どもの触覚による探索から着想を得て,ロボットの力センサと操作対象との力の合計に基づいて本質的な報酬を定式化する。
提案手法は,3つの基本ロボット操作ベンチマークにおける最先端手法の探索と性能向上を促進させる。
論文 参考訳(メタデータ) (2021-02-22T14:21:30Z) - Action and Perception as Divergence Minimization [43.75550755678525]
アクションパーセプション・ディバージェンス(Action Perception Divergence)は、エンボディエージェントの可能な目的関数の空間を分類するためのアプローチである。
狭い目的から一般的な目的に到達するスペクトルを示す。
これらのエージェントは、彼らの信念を世界と整合させるのに知覚を使い、行動を使って世界と信念を整合させる。
論文 参考訳(メタデータ) (2020-09-03T16:52:46Z) - Learning to Incentivize Other Learning Agents [73.03133692589532]
我々は、学習インセンティブ関数を用いて、RLエージェントに他のエージェントに直接報酬を与える能力を持たせる方法を示す。
このようなエージェントは、一般的なマルコフゲームにおいて、標準のRLと対戦型エージェントを著しく上回っている。
私たちの仕事は、マルチエージェントの未来において共通の善を確実にする道のりに沿って、より多くの機会と課題を指しています。
論文 参考訳(メタデータ) (2020-06-10T20:12:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。