論文の概要: Self-mediated exploration in artificial intelligence inspired by
cognitive psychology
- arxiv url: http://arxiv.org/abs/2302.06615v1
- Date: Mon, 13 Feb 2023 18:20:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-15 17:33:44.403903
- Title: Self-mediated exploration in artificial intelligence inspired by
cognitive psychology
- Title(参考訳): 認知心理学に触発された人工知能の自己媒介探索
- Authors: Gustavo Assun\c{c}\~ao, Miguel Castelo-Branco, Paulo Menezes
- Abstract要約: 物理環境の探索は、データ取得に必須の先駆者であり、分析的または直接的な試行を通じて知識生成を可能にする。
この研究は、人間の行動と人工エージェントを結び付け、自己開発を支援する。
その後の研究では、人工エージェントが収束に向けて繰り返し実施される以前のヒトの治験を反映するように設計されている。
その結果、ほとんどのエージェントが学んだ因果関係が、内部の状態と、人間に報告されたものと一致するための探索の間にあることが示された。
- 参考スコア(独自算出の注目度): 1.3351610617039975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exploration of the physical environment is an indispensable precursor to data
acquisition and enables knowledge generation via analytical or direct trialing.
Artificial Intelligence lacks the exploratory capabilities of even the most
underdeveloped organisms, hindering its autonomy and adaptability. Supported by
cognitive psychology, this works links human behavior and artificial agents to
endorse self-development. In accordance with reported data, paradigms of
epistemic and achievement emotion are embedded to machine-learning methodology
contingent on their impact when decision making. A study is subsequently
designed to mirror previous human trials, which artificial agents are made to
undergo repeatedly towards convergence. Results demonstrate causality, learned
by the vast majority of agents, between their internal states and exploration
to match those reported for human counterparts. The ramifications of these
findings are pondered for both research into human cognition and betterment of
artificial intelligence.
- Abstract(参考訳): 物理環境の探索は、データ取得に必須の先駆者であり、分析的または直接的な試行を通じて知識生成を可能にする。
人工知能は最も未発達の生物の探索能力に欠けており、その自律性と適応性を妨げている。
この研究は認知心理学に支えられ、人間の行動と人工エージェントを結びつけて自己開発を支援する。
報告されたデータによると、認識と達成感情のパラダイムは、意思決定の際の影響に基づいて機械学習手法に組み込まれている。
研究はその後、前回の人体実験を反映するように設計され、人工エージェントはコンバージェンスに向けて繰り返し実施される。
結果は、ほとんどのエージェントが学習した因果関係を示し、その内部状態と、人間に対して報告されたものと一致した探索の間にある。
これらの発見の影響は、人間の認知と人工知能の改善の研究の両方に考慮されている。
関連論文リスト
- Probing for Consciousness in Machines [3.196204482566275]
本研究は, 人工エージェントが中核意識を発達させる可能性を探るものである。
中心意識の出現は、感情や感情の表現によって知らされる自己モデルと世界モデルの統合に依存している。
その結果,エージェントは初歩的な世界と自己モデルを形成することができ,機械意識の発達への道筋が示唆された。
論文 参考訳(メタデータ) (2024-11-25T10:27:07Z) - Towards a Science Exocortex [0.5687661359570725]
我々はエージェントAIシステムにおける技術の現状をレビューし、これらの手法をどのように拡張して科学により大きな影響を与えるかについて論じる。
科学の外食はAIエージェントの群れとして設計することができ、各エージェントは特定の研究者のタスクを個別に合理化することができる。
論文 参考訳(メタデータ) (2024-06-24T14:32:32Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - A Rubric for Human-like Agents and NeuroAI [2.749726993052939]
コントリビュートされた研究は、振る舞いの模倣から機械学習メソッドのテストまで幅広い。
これら3つの目標のうちの1つが自動的に他の目標の進捗に変換されることは想定できない。
これは、弱く強いニューロAIとヒトのようなエージェントの例を用いて明らかにされている。
論文 参考訳(メタデータ) (2022-12-08T16:59:40Z) - NeuroCERIL: Robotic Imitation Learning via Hierarchical Cause-Effect
Reasoning in Programmable Attractor Neural Networks [2.0646127669654826]
本稿では,脳にインスパイアされた神経認知アーキテクチャであるNeuroCERILについて紹介する。
シミュレーションされたロボット模倣学習領域において,NeuroCERILは様々な手続き的スキルを習得できることを示す。
我々は、NeuroCERILは人間のような模倣学習の実行可能な神経モデルであると結論付けた。
論文 参考訳(メタデータ) (2022-11-11T19:56:11Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
本研究では,先行・知覚的信号の精度を変化させることで,個人・社会的タスク設定の両方で人間の行動データを再現可能であることを示す。
トレーニングされたネットワークの神経活性化トレースの分析は、情報が個人や社会的条件のネットワークにおいて、根本的に異なる方法でコード化されていることを示す。
論文 参考訳(メタデータ) (2022-03-03T17:19:12Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
心理学的好奇心は、探索と情報取得を通じて学習を強化するために、人間の知性において重要な役割を果たす。
人工知能(AI)コミュニティでは、人工好奇心は効率的な学習に自然な本質的な動機を与える。
CDLはますます人気を博し、エージェントは新たな知識を学習するために自己動機付けされている。
論文 参考訳(メタデータ) (2022-01-20T17:07:03Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z) - AGENT: A Benchmark for Core Psychological Reasoning [60.35621718321559]
直観心理学は、観察可能な行動を駆動する隠された精神変数を推論する能力です。
他のエージェントを推論する機械エージェントに対する近年の関心にもかかわらず、そのようなエージェントが人間の推論を駆動するコア心理学の原則を学ぶか保持するかは明らかではない。
本稿では,プロシージャが生成する3dアニメーション,エージェントを4つのシナリオで構成したベンチマークを提案する。
論文 参考訳(メタデータ) (2021-02-24T14:58:23Z) - A Developmental Neuro-Robotics Approach for Boosting the Recognition of
Handwritten Digits [91.3755431537592]
近年のエビデンスでは、子どもの体現戦略をシミュレーションすることで、マシンインテリジェンスも改善できることが示されている。
本稿では,発達神経ロボティクスの文脈における畳み込みニューラルネットワークモデルへの具体的戦略の適用について検討する。
論文 参考訳(メタデータ) (2020-03-23T14:55:00Z) - SensAI+Expanse Emotional Valence Prediction Studies with Cognition and
Memory Integration [0.0]
この研究は、認知科学研究を支援することができる人工知能エージェントに貢献する。
開発された人工知能システム(SensAI+Expanse)には、機械学習アルゴリズム、共感アルゴリズム、メモリが含まれる。
本研究は, 年齢と性別の相違が有意であることを示すものである。
論文 参考訳(メタデータ) (2020-01-03T18:17:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。