論文の概要: MolGround: A Benchmark for Molecular Grounding
- arxiv url: http://arxiv.org/abs/2503.23668v2
- Date: Tue, 01 Apr 2025 06:49:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-02 10:23:36.103279
- Title: MolGround: A Benchmark for Molecular Grounding
- Title(参考訳): MolGround:分子グラウンドのベンチマーク
- Authors: Jiaxin Wu, Ting Zhang, Rubing Chen, Wengyu Zhang, Chen Jason Zhang, Xiaoyong Wei, Li Qing,
- Abstract要約: そこで本研究では,モデル参照能力の評価を目的とした分子基盤ベンチマークを提案する。
我々はこれまでに79kのQAペアからなる分子理解ベンチマークを構築した。
我々のシステムはGPT-4oを含む既存のモデルよりも優れており、その基盤出力は従来のタスクを強化するために統合されている。
- 参考スコア(独自算出の注目度): 10.242626234027755
- License:
- Abstract: Current molecular understanding approaches predominantly focus on the descriptive aspect of human perception, providing broad, topic-level insights. However, the referential aspect -- linking molecular concepts to specific structural components -- remains largely unexplored. To address this gap, we propose a molecular grounding benchmark designed to evaluate a model's referential abilities. We align molecular grounding with established conventions in NLP, cheminformatics, and molecular science, showcasing the potential of NLP techniques to advance molecular understanding within the AI for Science movement. Furthermore, we constructed the largest molecular understanding benchmark to date, comprising 79k QA pairs, and developed a multi-agent grounding prototype as proof of concept. This system outperforms existing models, including GPT-4o, and its grounding outputs have been integrated to enhance traditional tasks such as molecular captioning and ATC (Anatomical, Therapeutic, Chemical) classification.
- Abstract(参考訳): 現在の分子理解アプローチは、主に人間の知覚の記述的な側面に注目し、幅広いトピックレベルの洞察を提供する。
しかし、分子概念を特定の構造成分にリンクする参照的側面はほとんど解明されていない。
このギャップに対処するために、モデルの参照能力を評価するために設計された分子基盤ベンチマークを提案する。
我々は、NLP、ケミノフォマティクス、分子科学の確立された慣習と分子基盤を整合させ、AI for Science運動における分子理解を促進するために、NLP技術の可能性を示す。
さらに、これまでに79kのQAペアからなる分子理解ベンチマークを構築し、概念実証としてマルチエージェント接地プロトタイプを開発した。
このシステムは、GPT-4oを含む既存のモデルよりも優れており、その基底出力は、分子キャプションやATC(解剖学、治療学、化学)分類などの伝統的なタスクを強化するために統合されている。
関連論文リスト
- Mol-LLaMA: Towards General Understanding of Molecules in Large Molecular Language Model [55.87790704067848]
Mol-LLaMAは、分子を中心とした一般的な知識を把握した大きな分子言語モデルである。
異なる分子エンコーダの相補的な情報を統合するモジュールを導入する。
実験の結果,Moll-LLaMAは分子の一般的な特徴を理解することができることがわかった。
論文 参考訳(メタデータ) (2025-02-19T05:49:10Z) - Knowledge-aware contrastive heterogeneous molecular graph learning [77.94721384862699]
分子グラフを不均一な分子グラフ学習(KCHML)に符号化するパラダイムシフトを提案する。
KCHMLは、不均一な分子グラフと二重メッセージパッシング機構によって強化された3つの異なるグラフビュー-分子、元素、薬理学-を通して分子を概念化する。
この設計は、プロパティ予測やドラッグ・ドラッグ・インタラクション(DDI)予測などの下流タスクに対する包括的な表現を提供する。
論文 参考訳(メタデータ) (2025-02-17T11:53:58Z) - FragNet: A Graph Neural Network for Molecular Property Prediction with Four Layers of Interpretability [0.7499722271664147]
本稿では,現在の最先端モデルに匹敵する予測精度を達成可能なグラフニューラルネットワークであるFragNetアーキテクチャを紹介する。
このモデルにより、どの原子、共有結合、分子断片、分子フラグメント結合が与えられた分子特性の予測に重要なのかを理解することができる。
FragNetの解釈能力は、分子構造と分子特性の間の学習パターンから科学的洞察を得るための鍵となる。
論文 参考訳(メタデータ) (2024-10-16T01:37:01Z) - Instruction Multi-Constraint Molecular Generation Using a Teacher-Student Large Language Model [49.64512917330373]
本稿では,学生に類似した多制約分子生成大言語モデルTSMMGを紹介する。
TSMMGを訓練するために、これらの「教師」から分子知識を抽出し、大量のテキスト-分子対を構築する。
我々は,TSMMGが複雑で自然言語で記述された特性を満たす分子を生成できることを実験的に明らかにした。
論文 参考訳(メタデータ) (2024-03-20T02:15:55Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIGは、画像とグラフ構造に基づいて分子特性を予測するための、新しいMultiModaL分子事前学習フレームワークである。
両者の分子表現の強さを融合させる。
ベンチマークグループ内の分子特性予測に関連する下流タスクでは、パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-11-28T10:28:35Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
本稿では,分子系の平衡分布を予測するために,分散グラフマー(DiG)と呼ばれる新しいディープラーニングフレームワークを導入する。
DiGはディープニューラルネットワークを用いて分子系の記述子に条件付き平衡分布に単純な分布を変換する。
論文 参考訳(メタデータ) (2023-06-08T17:12:08Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
我々は、原子とサブグラフを意識したバイラテラルアグリゲーション(ASBA)と呼ばれる分子表現学習の新しいモデルを導入する。
ASBAは、両方の種類の情報を統合することで、以前の原子単位とサブグラフ単位のモデルの限界に対処する。
本手法は,分子特性予測のための表現をより包括的に学習する方法を提供する。
論文 参考訳(メタデータ) (2023-05-22T00:56:00Z) - Domain-Agnostic Molecular Generation with Chemical Feedback [44.063584808910896]
MolGenは、分子生成に特化した事前訓練された分子言語モデルである。
1億以上の分子SELFIESを再構成することで構造的および文法的な洞察を内部化する。
我々の化学フィードバックパラダイムは、モデルを分子幻覚から遠ざけ、モデルの推定確率と実世界の化学的嗜好との整合性を確保する。
論文 参考訳(メタデータ) (2023-01-26T17:52:56Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - Geometric Deep Learning on Molecular Representations [0.0]
Geometric Deep Learning (GDL)は、対称性情報を取り込んで処理するニューラルネットワークアーキテクチャに基づいている。
このレビューは、分子GDLの構造的および調和された概要を提供し、その薬物発見、化学合成予測、量子化学への応用を強調している。
学習された分子の特徴と、確立された分子記述子との相補性に重点を置いている。
論文 参考訳(メタデータ) (2021-07-26T09:23:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。