論文の概要: Mapping Geopolitical Bias in 11 Large Language Models: A Bilingual, Dual-Framing Analysis of U.S.-China Tensions
- arxiv url: http://arxiv.org/abs/2503.23688v1
- Date: Mon, 31 Mar 2025 03:38:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:34:29.800187
- Title: Mapping Geopolitical Bias in 11 Large Language Models: A Bilingual, Dual-Framing Analysis of U.S.-China Tensions
- Title(参考訳): 11大言語モデルにおける地政学的バイアスのマッピング:米中緊張のバイリンガル・デュアルフラーミング分析
- Authors: William Guey, Pierrick Bougault, Vitor D. de Moura, Wei Zhang, Jose O. Gomes,
- Abstract要約: 本研究は,11大言語モデル(LLM)における地政学的バイアスを系統的に解析する。
モデル出力のイデオロギー的傾きを検出するために,19,712個のプロンプトを作成した。
米国をベースとしたモデルは、主に米国支持の姿勢を好んでおり、一方中国のモデルでは、中国支持の偏見が顕著であった。
- 参考スコア(独自算出の注目度): 2.8202443616982884
- License:
- Abstract: This study systematically analyzes geopolitical bias across 11 prominent Large Language Models (LLMs) by examining their responses to seven critical topics in U.S.-China relations. Utilizing a bilingual (English and Chinese) and dual-framing (affirmative and reverse) methodology, we generated 19,712 prompts designed to detect ideological leanings in model outputs. Responses were quantitatively assessed on a normalized scale from -2 (strongly Pro-China) to +2 (strongly Pro-U.S.) and categorized according to stance, neutrality, and refusal rates. The findings demonstrate significant and consistent ideological alignments correlated with the LLMs' geographic origins; U.S.-based models predominantly favored Pro-U.S. stances, while Chinese-origin models exhibited pronounced Pro-China biases. Notably, language and prompt framing substantially influenced model responses, with several LLMs exhibiting stance reversals based on prompt polarity or linguistic context. Additionally, we introduced comprehensive metrics to evaluate response consistency across languages and framing conditions, identifying variability and vulnerabilities in model behaviors. These results offer practical insights that can guide organizations and individuals in selecting LLMs best aligned with their operational priorities and geopolitical considerations, underscoring the importance of careful model evaluation in politically sensitive applications. Furthermore, the research highlights specific prompt structures and linguistic variations that can strategically trigger distinct responses from models, revealing methods for effectively navigating and influencing LLM outputs.
- Abstract(参考訳): 本研究は,米国・中国関係における7つの重要なトピックに対する応答を調べることで,11大言語モデル(LLM)の地政学的偏見を体系的に分析する。
バイリンガル(英語と中国語)と二重フレーミング(肯定的と逆)の手法を用いて、モデル出力におけるイデオロギー的傾きを検出するように設計された19,712のプロンプトを生成した。
反応は-2(強くは中国)から+2(強くは米国)までの正規化スケールで定量的に評価され、姿勢、中立性、拒絶率に応じて分類された。
その結果、LLMの地理的起源に相関する顕著で一貫したイデオロギー的アライメントが示され、米国ベースのモデルはプロ・アメリカ的スタンスを主に好んでおり、一方、中国系オリジンモデルはプロ・中国的バイアスを顕著に示していた。
特に、言語と即時フレーミングはモデル応答に大きく影響し、いくつかのLDMは、即時極性や言語文脈に基づいた姿勢逆転を示す。
さらに、言語とフレーミング条件間の応答整合性を評価するための総合的なメトリクスを導入し、モデルの振る舞いにおける可変性と脆弱性を特定しました。
これらの結果は、政治的に敏感なアプリケーションにおける慎重なモデル評価の重要性を浮き彫りにして、運用上の優先事項や地政学的考察に最も適したLLMを選択する上で、組織や個人を導くための実践的な洞察を提供する。
さらに、モデルから異なる応答を戦略的に引き起こすことができる特定のプロンプト構造と言語的バリエーションを強調し、LLM出力を効果的にナビゲートし、影響を及ぼす方法を明らかにする。
関連論文リスト
- Exploring Robustness of LLMs to Sociodemographically-Conditioned Paraphrasing [7.312170216336085]
我々は、社会デミノグラフィーの次元にまたがる幅広いバリエーションを探求するために、より広いアプローチを取る。
我々はSocialIQAデータセットを拡張し、ソシオデミノグラフィースタイルを条件とした多様なパラフレーズセットを作成する。
人口統計学的パラフレーズが言語モデルの性能に大きく影響していることが判明した。
論文 参考訳(メタデータ) (2025-01-14T17:50:06Z) - Large Language Models as Neurolinguistic Subjects: Discrepancy in Performance and Competence for Form and Meaning [49.60849499134362]
本研究では,大言語モデル(LLM)の記号化(形式)および記号化(意味)に関する言語的理解について検討する。
ミニマルペアと診断プローブを組み合わせてモデル層間のアクティベーションパターンを解析する新しい手法を用いて,ニューロ言語学的アプローチを提案する。
その結果,(1)心理言語学的・神経言語学的手法では,言語能力と能力が異なっていること,(2)直接確率測定では言語能力が正確に評価されないこと,(3)指導のチューニングでは能力が大きく変化しないが,性能は向上しないことがわかった。
論文 参考訳(メタデータ) (2024-11-12T04:16:44Z) - Large Language Models Reflect the Ideology of their Creators [71.65505524599888]
大規模言語モデル(LLM)は、自然言語を生成するために大量のデータに基づいて訓練される。
本稿では, LLMのイデオロギー的姿勢が創造者の世界観を反映していることを示す。
論文 参考訳(メタデータ) (2024-10-24T04:02:30Z) - Do Vision-Language Models Represent Space and How? Evaluating Spatial Frame of Reference Under Ambiguities [27.940469021840745]
視覚言語モデル(VLM)の空間的推論能力を評価するための評価プロトコルを提案する。
あいまいさを解消する英語の慣行と幾らかの整合性があるにもかかわらず、本実験はVLMの重大な欠点を明らかにした。
視覚言語モデルと人間の認知的直感の整合化を図りつつ、我々は空間的推論のあいまいさと文化的な多様性により多くの注意を払っている。
論文 参考訳(メタデータ) (2024-10-22T19:39:15Z) - Covert Bias: The Severity of Social Views' Unalignment in Language Models Towards Implicit and Explicit Opinion [0.40964539027092917]
過度なバイアスシナリオのエッジケースにおけるバイアスモデルを用いて、ビューに対するバイアスの重症度を評価する。
以上の結果から,暗黙的・明示的な意見の識別において,LLM 性能の相違が明らかとなり,反対意見の明示的な意見に対する偏見の傾向が一般的であった。
非整合モデルの直接的な不注意な反応は、決定性のさらなる洗練の必要性を示唆している。
論文 参考訳(メタデータ) (2024-08-15T15:23:00Z) - Evaluating Implicit Bias in Large Language Models by Attacking From a Psychometric Perspective [66.34066553400108]
我々は、ある人口層に対する大きな言語モデルの暗黙の偏見を厳格に評価する。
心理測定の原則にインスパイアされた我々は,3つの攻撃的アプローチ,すなわち,軽視,軽視,指導を提案する。
提案手法は,LLMの内部バイアスを競合ベースラインよりも効果的に引き出すことができる。
論文 参考訳(メタデータ) (2024-06-20T06:42:08Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
大規模言語モデル(LLM)は、これらのモデルにおけるバイアスの頻度とその緩和に関する激しい議論を引き起こしている。
本稿では,意思決定プロセスに寄与する属性の抽出と仲介を行うためのプロンプトベースの手法を提案する。
観察された異なる治療は、少なくとも部分的には、属性の相違とモデルの相違によるものであることが判明した。
論文 参考訳(メタデータ) (2023-11-15T00:02:25Z) - Quantifying the Dialect Gap and its Correlates Across Languages [69.18461982439031]
この研究は、明らかな相違を明らかにし、マインドフルなデータ収集を通じてそれらに対処する可能性のある経路を特定することによって、方言NLPの分野を強化する基盤となる。
論文 参考訳(メタデータ) (2023-10-23T17:42:01Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
本稿では, AM2iCo, Adversarial and Multilingual Meaning in Contextを提案する。
言語間文脈における単語の意味の同一性を理解するために、最先端(SotA)表現モデルを忠実に評価することを目的としている。
その結果、現在のSotAプリトレーニングエンコーダは人間のパフォーマンスにかなり遅れていることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-17T20:23:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。