論文の概要: Simple yet Effective Node Property Prediction on Edge Streams under Distribution Shifts
- arxiv url: http://arxiv.org/abs/2504.00328v1
- Date: Tue, 01 Apr 2025 01:20:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:20:30.151283
- Title: Simple yet Effective Node Property Prediction on Edge Streams under Distribution Shifts
- Title(参考訳): 分布シフトによるエッジストリーム上の単純かつ効果的なノード特性予測
- Authors: Jongha Lee, Taehyung Kwon, Heechan Moon, Kijung Shin,
- Abstract要約: 出現するエッジのストリームから動的ノード特性を予測するために、時間グラフニューラルネットワーク(TGNN)が開発された。
本稿では,分散シフト下でのエッジストリーム上のノード特性の予測方法であるSPLASHを提案する。
- 参考スコア(独自算出の注目度): 18.590561557743477
- License:
- Abstract: The problem of predicting node properties (e.g., node classes) in graphs has received significant attention due to its broad range of applications. Graphs from real-world datasets often evolve over time, with newly emerging edges and dynamically changing node properties, posing a significant challenge for this problem. In response, temporal graph neural networks (TGNNs) have been developed to predict dynamic node properties from a stream of emerging edges. However, our analysis reveals that most TGNN-based methods are (a) far less effective without proper node features and, due to their complex model architectures, (b) vulnerable to distribution shifts. In this paper, we propose SPLASH, a simple yet powerful method for predicting node properties on edge streams under distribution shifts. Our key contributions are as follows: (1) we propose feature augmentation methods and an automatic feature selection method for edge streams, which improve the effectiveness of TGNNs, (2) we propose a lightweight MLP-based TGNN architecture that is highly efficient and robust under distribution shifts, and (3) we conduct extensive experiments to evaluate the accuracy, efficiency, generalization, and qualitative performance of the proposed method and its competitors on dynamic node classification, dynamic anomaly detection, and node affinity prediction tasks across seven real-world datasets.
- Abstract(参考訳): グラフにおけるノード特性(例えばノードクラス)の予測問題は、その広範囲なアプリケーションによって大きな注目を集めている。
現実のデータセットからのグラフはしばしば時間とともに進化し、新しく出現するエッジと動的にノードプロパティが変更される。
応答として、出現するエッジのストリームから動的ノード特性を予測するために、時間グラフニューラルネットワーク(TGNN)が開発された。
しかし,分析の結果,ほとんどのTGNN手法が有用であることが判明した。
a) 適切なノード機能がなく、複雑なモデルアーキテクチャのため、はるかに効果が低い。
(b)分布シフトに弱い。
本稿では,分散シフト下でのエッジストリーム上のノード特性の予測手法であるSPLASHを提案する。
主な貢献は,(1)TGNNの有効性を向上させるエッジストリームの機能拡張法と自動特徴選択法,(2)分散シフト下で高効率で堅牢な軽量MLPベースのTGNNアーキテクチャを提案し,(3)提案手法と競合する動的ノード分類,動的異常検出,および7つの実世界のデータセット間のノード親和性予測タスクについて,その精度,効率,一般化,質的性能を評価するための広範な実験を行った。
関連論文リスト
- COMBINEX: A Unified Counterfactual Explainer for Graph Neural Networks via Node Feature and Structural Perturbations [6.894071825948456]
我々は,ノード分類タスクとグラフ分類タスクの両方に対して,対実的な説明を生成する新しいGNN説明器であるCOMBINEXを提案する。
構造的および特徴に基づく変更を独立に扱う従来の方法とは異なり、COMBINEXはエッジとノードの特徴への修正を最適にバランスする。
この統一されたアプローチは、モデルの予測を反転させるために必要な最小限かつ効果的な変更を保証し、現実的で解釈可能な反事実をもたらす。
論文 参考訳(メタデータ) (2025-02-14T12:17:24Z) - Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) はノード分類タスク用に設計された非神経モデルである。
GNNにアクセスできる情報のごく一部しか使わない従来のグラフアルゴリズムとは異なり、提案モデルではノードの特徴とエンティティ間の関係を同時に活用する。
論文 参考訳(メタデータ) (2024-11-19T08:32:14Z) - Sparse Decomposition of Graph Neural Networks [20.768412002413843]
本稿では,集約中に含まれるノード数を削減する手法を提案する。
線形変換された特徴の重み付け和を用いてノード表現の近似を学習し、スパース分解によりこれを実現できる。
提案手法は推論高速化のために設計された他のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-25T17:52:16Z) - Matcha: Mitigating Graph Structure Shifts with Test-Time Adaptation [66.40525136929398]
テスト時間適応(TTA)は、ソースドメインに再アクセスすることなく、トレーニング済みのモデルをターゲットドメインに適応できる能力によって注目を集めている。
グラフの構造シフトへの効果的かつ効率的な適応を目的とした,革新的なフレームワークであるMatchaを提案する。
合成と実世界の両方のデータセットに対するMatchaの有効性を検証し、構造と属性シフトの様々な組み合わせにおける頑健さを実証した。
論文 参考訳(メタデータ) (2024-10-09T15:15:40Z) - Rethinking Node-wise Propagation for Large-scale Graph Learning [42.29535580297932]
textbfAdaptive textbfTopology-aware textbfPropagation (ATP)
ATPは潜在的な高バイアス伝播を低減し、各ノードの構造パターンをスケーラブルに抽出し、実行効率と予測性能を改善する。
ATPは、半教師付きノード分類のための広範でスケーラブルなGNNの性能を改善するのに効率的であることが証明されている。
論文 参考訳(メタデータ) (2024-02-09T01:19:47Z) - Resilient Graph Neural Networks: A Coupled Dynamical Systems Approach [12.856220339384269]
グラフニューラルネットワーク(GNN)は、さまざまなグラフベースのタスクに対処するための重要なコンポーネントとして、自らを確立している。
彼らの顕著な成功にもかかわらず、GNNは相変わらず敵の攻撃の形で摂動を入力できる。
本稿では, 連成力学系のレンズを用いて, 対向摂動に対するGNNの強化手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T20:06:48Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - Mixed Graph Contrastive Network for Semi-Supervised Node Classification [63.924129159538076]
我々はMixed Graph Contrastive Network(MGCN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
本研究では,非摂動増強戦略と相関還元機構により,潜伏埋め込みの識別能力を向上する。
これら2つの設定を組み合わせることで、識別表現学習のために、豊富なノードと稀に価値あるラベル付きノードの両方から、豊富な監視情報を抽出する。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
本稿では,動的グラフの異常エッジを検出するために,エンドツーエンドの時間構造グラフニューラルネットワークモデルを提案する。
特に,まずターゲットエッジを中心にした$h$ホップ囲むサブグラフを抽出し,各ノードの役割を識別するノードラベル機能を提案する。
抽出した特徴に基づき,GRU(Gated Recurrent Unit)を用いて,異常検出のための時間的情報を取得する。
論文 参考訳(メタデータ) (2020-05-15T09:17:08Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。