論文の概要: Pan-LUT: Efficient Pan-sharpening via Learnable Look-Up Tables
- arxiv url: http://arxiv.org/abs/2503.23793v1
- Date: Mon, 31 Mar 2025 07:13:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:35:16.513439
- Title: Pan-LUT: Efficient Pan-sharpening via Learnable Look-Up Tables
- Title(参考訳): Pan-LUT: 学習可能なルックアップテーブルによる効率の良いパンシャーピング
- Authors: Zhongnan Cai, Yingying Wang, Yunlong Lin, Hui Zheng, Ge Meng, Zixu Lin, Jiaxin Xie, Junbin Lu, Yue Huang, Xinghao Ding,
- Abstract要約: パンシャーピングのための学習可能なルックアップテーブルフレームワークであるPan-LUTを提案する。
Pan-LUTは高解像度リモートセンシング画像の性能と計算効率のバランスをとる。
提案手法は300K未満のパラメータを含み、8K解像度画像を1ms以下で処理する。
- 参考スコア(独自算出の注目度): 32.23794092167474
- License:
- Abstract: Recently, deep learning-based pan-sharpening algorithms have achieved notable advancements over traditional methods. However, many deep learning-based approaches incur substantial computational overhead during inference, especially with high-resolution images. This excessive computational demand limits the applicability of these methods in real-world scenarios, particularly in the absence of dedicated computing devices such as GPUs and TPUs. To address these challenges, we propose Pan-LUT, a novel learnable look-up table (LUT) framework for pan-sharpening that strikes a balance between performance and computational efficiency for high-resolution remote sensing images. To finely control the spectral transformation, we devise the PAN-guided look-up table (PGLUT) for channel-wise spectral mapping. To effectively capture fine-grained spatial details and adaptively learn local contexts, we introduce the spatial details look-up table (SDLUT) and adaptive aggregation look-up table (AALUT). Our proposed method contains fewer than 300K parameters and processes a 8K resolution image in under 1 ms using a single NVIDIA GeForce RTX 2080 Ti GPU, demonstrating significantly faster performance compared to other methods. Experiments reveal that Pan-LUT efficiently processes large remote sensing images in a lightweight manner, bridging the gap to real-world applications. Furthermore, our model surpasses SOTA methods in full-resolution scenes under real-world conditions, highlighting its effectiveness and efficiency.
- Abstract(参考訳): 近年,ディープラーニングに基づくパンシャーピングアルゴリズムは,従来の手法よりも顕著な進歩を遂げている。
しかし、多くのディープラーニングベースのアプローチは、特に高解像度画像の場合、推論中にかなりの計算オーバーヘッドを発生させる。
この過剰な計算要求は、現実のシナリオ、特にGPUやTPUのような専用コンピューティングデバイスがない場合に、これらの手法の適用性を制限している。
これらの課題に対処するために,我々は,高解像度リモートセンシング画像の性能と計算効率のバランスをとるパンシャーピングのための,新しい学習可能なルックアップテーブル(LUT)フレームワークであるPan-LUTを提案する。
スペクトル変換を細かく制御するために、チャネルワイドスペクトルマッピングのためのPAN誘導ルックアップテーブル(PGLUT)を考案する。
空間的詳細を効果的に把握し,局所的文脈を適応的に学習するために,空間的詳細検索表(SDLUT)と適応的集約検索表(AALUT)を導入する。
提案手法は300K未満のパラメータを含み,1つのNVIDIA GeForce RTX 2080 Ti GPUを用いて8K解像度画像を1ミリ秒以下で処理し,他の手法と比較して性能が著しく向上した。
実験によると、Pan-LUTは大規模なリモートセンシング画像を軽量に効率的に処理し、現実世界のアプリケーションにギャップを埋めている。
さらに,本モデルは実環境下でのフル解像度シーンにおけるSOTA手法を超越し,その有効性と効率性を強調した。
関連論文リスト
- FLARES: Fast and Accurate LiDAR Multi-Range Semantic Segmentation [52.89847760590189]
3Dシーンの理解は、自動運転における重要な課題である。
近年の手法では、レンジビュー表現を利用して処理効率を向上している。
範囲ビューに基づくLiDARセマンティックセマンティックセグメンテーションのためのワークフローを再設計する。
論文 参考訳(メタデータ) (2025-02-13T12:39:26Z) - Multi-Head Attention Residual Unfolded Network for Model-Based Pansharpening [2.874893537471256]
展開融合法は、ディープラーニングの強力な表現能力とモデルベースアプローチの堅牢性を統合する。
本稿では,衛星画像融合のためのモデルに基づく深部展開手法を提案する。
PRISMA、Quickbird、WorldView2データセットの実験結果から、本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2024-09-04T13:05:00Z) - EPNet: An Efficient Pyramid Network for Enhanced Single-Image
Super-Resolution with Reduced Computational Requirements [12.439807086123983]
シングルイメージ超解像(SISR)は、ディープラーニングの統合によって大幅に進歩した。
本稿では,エッジ分割ピラミッドモジュール (ESPM) とパノラマ特徴抽出モジュール (PFEM) を調和して結合し,既存の手法の限界を克服する,EPNet (Efficient Pyramid Network) を提案する。
論文 参考訳(メタデータ) (2023-12-20T19:56:53Z) - Low-Resolution Self-Attention for Semantic Segmentation [93.30597515880079]
我々は,グローバルコンテキストを計算コストの大幅な削減で捉えるために,低解像度自己認識(LRSA)機構を導入する。
我々のアプローチは、入力画像の解像度に関わらず、固定された低解像度空間における自己注意を計算することである。
本稿では,エンコーダ・デコーダ構造を持つビジョントランスであるLRFormerを構築することで,LRSA手法の有効性を示す。
論文 参考訳(メタデータ) (2023-10-08T06:10:09Z) - Adaptive Multi-NeRF: Exploit Efficient Parallelism in Adaptive Multiple
Scale Neural Radiance Field Rendering [3.8200916793910973]
ニューラル・ラジアンス・フィールド(NeRF)の最近の進歩は、3次元シーンの出現を暗黙のニューラルネットワークとして表す重要な可能性を示している。
しかし、長いトレーニングとレンダリングのプロセスは、リアルタイムレンダリングアプリケーションにこの有望なテクニックを広く採用することを妨げる。
本稿では,大規模シーンのニューラルネットワークレンダリングプロセスの高速化を目的とした適応型マルチNeRF手法を提案する。
論文 参考訳(メタデータ) (2023-10-03T08:34:49Z) - Pixel Adapter: A Graph-Based Post-Processing Approach for Scene Text
Image Super-Resolution [22.60056946339325]
アップサンプリングによる画素歪みに対処するために,グラフアテンションに基づくPixel Adapter Module (PAM)を提案する。
PAMは、各ピクセルが隣人と対話し、機能を更新することで、ローカルな構造情報を効果的にキャプチャする。
提案手法は,従来の認識精度を上回り,高品質な超解像を生成することを実証する。
論文 参考訳(メタデータ) (2023-09-16T08:12:12Z) - Ultra-High-Definition Low-Light Image Enhancement: A Benchmark and
Transformer-Based Method [51.30748775681917]
低照度画像強調(LLIE)の課題を考察し,4K解像度と8K解像度の画像からなる大規模データベースを導入する。
我々は、系統的なベンチマーク研究を行い、現在のLLIEアルゴリズムと比較する。
第2のコントリビューションとして,変換器をベースとした低照度化手法であるLLFormerを紹介する。
論文 参考訳(メタデータ) (2022-12-22T09:05:07Z) - Panoptic SwiftNet: Pyramidal Fusion for Real-time Panoptic Segmentation [0.0]
多くのアプリケーションは、安価なハードウェアや組み込みハードウェアの大規模な入力解像度よりも高速な推論を必要とする。
マルチスケール特徴抽出のためのバックボーン容量をトレードオフすることで,この目標を達成することを提案する。
本稿では,Cityscapes,Vistas,COCO,BSB-Aerialデータセットについてパノラマ実験を行った。
論文 参考訳(メタデータ) (2022-03-15T13:47:40Z) - Image-specific Convolutional Kernel Modulation for Single Image
Super-resolution [85.09413241502209]
本稿では,新しい画像特異的畳み込み変調カーネル(IKM)を提案する。
我々は、画像や特徴のグローバルな文脈情報を利用して、畳み込みカーネルを適応的に調整するための注意重みを生成する。
単一画像超解像実験により,提案手法は最先端手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-11-16T11:05:10Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
ハイパースペクトル画像超解像のための新しいスペクトル空間残差ネットワーク(SSRNet)を提案する。
提案手法は,2次元畳み込みではなく3次元畳み込みを用いて空間スペクトル情報の探索を効果的に行うことができる。
各ユニットでは空間的・時間的分離可能な3次元畳み込みを用いて空間的・スペクトル的な情報を抽出する。
論文 参考訳(メタデータ) (2020-01-14T03:34:55Z) - GridMask Data Augmentation [76.79300104795966]
本稿では,新しいデータ拡張手法であるGridMaskを提案する。
情報除去を利用して、様々なコンピュータビジョンタスクで最先端の結果を達成する。
論文 参考訳(メタデータ) (2020-01-13T07:27:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。