論文の概要: GLane3D : Detecting Lanes with Graph of 3D Keypoints
- arxiv url: http://arxiv.org/abs/2503.23882v1
- Date: Mon, 31 Mar 2025 09:33:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:35:12.941253
- Title: GLane3D : Detecting Lanes with Graph of 3D Keypoints
- Title(参考訳): GLane3D : 3次元キーポイントグラフによるレーン検出
- Authors: Halil İbrahim Öztürk, Muhammet Esat Kalfaoğlu, Ozsel Kilinc,
- Abstract要約: 本稿では,レーンのキーポイントを検出し,その間の連続的な接続を予測して3次元レーンを構築する手法を提案する。
PointNMSは、重複する提案キーポイントを排除し、推定されたBEVグラフの冗長性を減少させる。
提案モデルでは,ApolloとOpenLaneの両データセットの最先端手法を上回り,優れたF1スコアと強力な一般化能力を示す。
- 参考スコア(独自算出の注目度): 1.7751300245073598
- License:
- Abstract: Accurate and efficient lane detection in 3D space is essential for autonomous driving systems, where robust generalization is the foremost requirement for 3D lane detection algorithms. Considering the extensive variation in lane structures worldwide, achieving high generalization capacity is particularly challenging, as algorithms must accurately identify a wide variety of lane patterns worldwide. Traditional top-down approaches rely heavily on learning lane characteristics from training datasets, often struggling with lanes exhibiting previously unseen attributes. To address this generalization limitation, we propose a method that detects keypoints of lanes and subsequently predicts sequential connections between them to construct complete 3D lanes. Each key point is essential for maintaining lane continuity, and we predict multiple proposals per keypoint by allowing adjacent grids to predict the same keypoint using an offset mechanism. PointNMS is employed to eliminate overlapping proposal keypoints, reducing redundancy in the estimated BEV graph and minimizing computational overhead from connection estimations. Our model surpasses previous state-of-the-art methods on both the Apollo and OpenLane datasets, demonstrating superior F1 scores and a strong generalization capacity when models trained on OpenLane are evaluated on the Apollo dataset, compared to prior approaches.
- Abstract(参考訳): 3次元空間における高精度かつ効率的な車線検出は、ロバストな一般化が3次元車線検出アルゴリズムの最も重要な要件である自律運転システムにおいて不可欠である。
世界中の車線構造の変化を考えると、アルゴリズムが世界中の様々な車線パターンを正確に識別する必要があるため、高い一般化能力を達成することは特に困難である。
従来のトップダウンアプローチは、トレーニングデータセットからのレーン特性の学習に大きく依存する。
この一般化の限界に対処するために, レーンのキーポイントを検出し, その後, それら間の逐次接続を予測して, 完全な3次元レーンを構築する手法を提案する。
各キーポイントはレーン連続性を維持するために必須であり、オフセット機構を用いて隣接するグリッドが同じキーポイントを予測することによって、キーポイント毎に複数の提案を予測できる。
PointNMSは、重複する提案キーポイントを排除し、推定されたBEVグラフの冗長性を低減し、接続推定から計算オーバーヘッドを最小化するために使用される。
我々のモデルは,ApolloとOpenLaneの両方のデータセットにおける従来の最先端手法を超越し,OpenLaneでトレーニングされたモデルがApolloのデータセット上で評価された場合,F1スコアと強力な一般化能力を示す。
関連論文リスト
- OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
学習可能なクエリの集合を用いて、占有された場所とクラスを同時に予測するフレームワークを提案する。
OPUSには、モデルパフォーマンスを高めるための非自明な戦略が組み込まれている。
最も軽量なモデルではOcc3D-nuScenesデータセットの2倍 FPS に優れたRayIoUが得られる一方、最も重いモデルは6.1 RayIoUを上回ります。
論文 参考訳(メタデータ) (2024-09-14T07:44:22Z) - Learning Shared RGB-D Fields: Unified Self-supervised Pre-training for Label-efficient LiDAR-Camera 3D Perception [17.11366229887873]
我々は、統合事前訓練戦略、NeRF-Supervised Masked Auto(NS-MAE)を導入する。
NS-MAEは、外観と幾何学の両方を符号化するNeRFの能力を利用して、マルチモーダルデータの効率的なマスク付き再構築を可能にする。
結果: NS-MAE は SOTA 事前学習法よりも優れており,各モードに対して個別の戦略を用いる。
論文 参考訳(メタデータ) (2024-05-28T08:13:49Z) - Unifying Lane-Level Traffic Prediction from a Graph Structural Perspective: Benchmark and Baseline [21.37853568400125]
本稿では,レーンレベルの交通予測における既存研究を幅広く分析し,分類する。
グラフ構造と予測ネットワークに基づくシンプルなベースラインモデルであるGraphMLPを導入している。
既存の研究では公開されていないコードを複製し、有効性、効率、適用性の観点から様々なモデルを評価しました。
論文 参考訳(メタデータ) (2024-03-22T04:21:40Z) - 3D Lane Detection from Front or Surround-View using Joint-Modeling & Matching [27.588395086563978]
本稿では,Bezier曲線と手法を組み合わせた共同モデリング手法を提案する。
また,3次元サラウンドビューレーン検出研究の探索を目的とした新しい3次元空間についても紹介する。
この革新的な手法は、Openlaneデータセットのフロントビュー3Dレーン検出において、新しいベンチマークを確立する。
論文 参考訳(メタデータ) (2024-01-16T01:12:24Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Decoupling the Curve Modeling and Pavement Regression for Lane Detection [67.22629246312283]
曲線に基づく車線表現は多くの車線検出法で一般的な手法である。
本稿では,曲線モデルと地上高さ回帰という2つの部分に分解することで,車線検出タスクに対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-19T11:24:14Z) - SPOT: Scalable 3D Pre-training via Occupancy Prediction for Learning Transferable 3D Representations [76.45009891152178]
トレーニング-ファインタニングアプローチは、さまざまな下流データセットとタスクをまたいだトレーニング済みのバックボーンを微調整することで、ラベル付けの負担を軽減することができる。
本稿では, 一般表現学習が, 占領予測のタスクを通じて達成できることを, 初めて示す。
本研究は,LiDAR 点の理解を促進するとともに,LiDAR の事前訓練における今後の進歩の道を開くことを目的とする。
論文 参考訳(メタデータ) (2023-09-19T11:13:01Z) - PointOcc: Cylindrical Tri-Perspective View for Point-based 3D Semantic
Occupancy Prediction [72.75478398447396]
本稿では,点雲を効果的かつ包括的に表現する円筒型三重対視図を提案する。
また,LiDAR点雲の距離分布を考慮し,円筒座標系における三点ビューを構築した。
プロジェクション中に構造の詳細を維持するために空間群プーリングを使用し、各TPV平面を効率的に処理するために2次元バックボーンを採用する。
論文 参考訳(メタデータ) (2023-08-31T17:57:17Z) - OpenOccupancy: A Large Scale Benchmark for Surrounding Semantic
Occupancy Perception [73.05425657479704]
我々は,最初のセマンティック占有感評価ベンチマークであるOpenOccupancyを提案する。
大規模なnuScenesデータセットを拡張した。
周囲の占有感の複雑さを考慮し、粗い予測を洗練させるためにカスケード占領ネットワーク(CONET)を提案する。
論文 参考訳(メタデータ) (2023-03-07T15:43:39Z) - A Keypoint-based Global Association Network for Lane Detection [47.93323407661912]
レーン検出は、レーンラインの複雑なトポロジー形状を予測し、異なる種類のレーンを同時に区別する必要がある、困難なタスクである。
新しい視点からレーン検出問題を定式化するためのグローバルアソシエーションネットワーク(GANet)を提案する。
F1スコアはCULaneが79.63%、Tusimpleデータセットが97.71%、高いFPSが97.71%である。
論文 参考訳(メタデータ) (2022-04-15T05:24:04Z) - Focus on Local: Detecting Lane Marker from Bottom Up via Key Point [10.617793053931964]
本研究では,局所パターンのモデル化とグローバルな構造予測に焦点をあてた新しいレーンマーカー検出ソリューションFOLOLaneを提案する。
具体的には、CNNは2つの異なる頭部を持つ低複雑局所パターンをモデル化し、第1は鍵点の存在を予測し、第2は局所範囲における鍵点の位置を洗練し、同じレーン線の鍵点を相関させる。
論文 参考訳(メタデータ) (2021-05-28T08:59:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。