Kernel-based dequantization of variational QML without Random Fourier Features
- URL: http://arxiv.org/abs/2503.23931v1
- Date: Mon, 31 Mar 2025 10:26:16 GMT
- Title: Kernel-based dequantization of variational QML without Random Fourier Features
- Authors: Ryan Sweke, Seongwook Shin, Elies Gil-Fuster,
- Abstract summary: Recent proposals toward dequantizing variational QML models for regression problems include approaches based on kernel methods with carefully chosen kernel functions.<n>We show that for a wide range of instances, this approach can be simplified.<n>Our results enhance the toolkit for kernel-based dequantization of variational QML.
- Score: 0.3277163122167433
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There is currently a huge effort to understand the potential and limitations of variational quantum machine learning (QML) based on the optimization of parameterized quantum circuits. Recent proposals toward dequantizing variational QML models for regression problems include approaches based on kernel methods with carefully chosen kernel functions, approximated via Random Fourier Features (RFF). In this short note we show that for a wide range of instances, this approach can be simplified. More specifically, we show that the kernels whose evaluation is approximated by RFF in this dequantization algorithm can in fact often be evaluated exactly and efficiently classically. As such, our results enhance the toolkit for kernel-based dequantization of variational QML.
Related papers
- Q-MAML: Quantum Model-Agnostic Meta-Learning for Variational Quantum Algorithms [4.525216077859531]
We introduce a new framework for optimizing parameterized quantum circuits (PQCs) that employs a classical, inspired by Model-Agnostic Meta-Learning (MAML) technique.<n>Our framework features a classical neural network, called Learner, which interacts with a PQC using the output of Learner as an initial parameter.<n>In the adaptation phase, the framework requires only a few PQC updates to converge to a more accurate value, while the learner remains unchanged.
arXiv Detail & Related papers (2025-01-10T12:07:00Z) - Variance-Reducing Couplings for Random Features [57.73648780299374]
Random features (RFs) are a popular technique to scale up kernel methods in machine learning.
We find couplings to improve RFs defined on both Euclidean and discrete input spaces.
We reach surprising conclusions about the benefits and limitations of variance reduction as a paradigm.
arXiv Detail & Related papers (2024-05-26T12:25:09Z) - Randomized semi-quantum matrix processing [0.0]
We present a hybrid quantum-classical framework for simulating generic matrix functions.
The method is based on randomization over the Chebyshev approximation of the target function.
We prove advantages on average depths, including quadratic speed-ups on costly parameters.
arXiv Detail & Related papers (2023-07-21T18:00:28Z) - Faster variational quantum algorithms with quantum kernel-based
surrogate models [0.0]
We present a new method for small-to-intermediate scale variational algorithms on noisy quantum processors.
Our scheme shifts the computational burden onto the classical component of these hybrid algorithms, greatly reducing the number of queries to the quantum processor.
arXiv Detail & Related papers (2022-11-02T14:11:25Z) - A kernel-based quantum random forest for improved classification [0.0]
Quantum Machine Learning (QML) to enhance traditional classical learning methods has seen various limitations to its realisation.
We extend the linear quantum support vector machine (QSVM) with kernel function computed through quantum kernel estimation (QKE)
To limit overfitting, we further extend the model to employ a low-rank Nystr"om approximation to the kernel matrix.
arXiv Detail & Related papers (2022-10-05T15:57:31Z) - Quantum Kernel Methods for Solving Differential Equations [21.24186888129542]
We propose several approaches for solving differential equations (DEs) with quantum kernel methods.
We compose quantum models as weighted sums of kernel functions, where variables are encoded using feature maps and model derivatives are represented.
arXiv Detail & Related papers (2022-03-16T18:56:35Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Error Bounds for Variational Quantum Time Evolution [4.38301148531795]
Variational quantum time evolution allows us to simulate the time dynamics of quantum systems with near-term compatible quantum circuits.
Due to the variational nature of this method the accuracy of the simulation is a priori unknown.
We derive global phase error bounds for the state simulation accuracy with variational quantum time evolution.
arXiv Detail & Related papers (2021-07-30T18:00:25Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2021-07-11T10:56:24Z) - Quantum Error Mitigation Relying on Permutation Filtering [84.66087478797475]
We propose a general framework termed as permutation filters, which includes the existing permutation-based methods as special cases.
We show that the proposed filter design algorithm always converges to the global optimum, and that the optimal filters can provide substantial improvements over the existing permutation-based methods.
arXiv Detail & Related papers (2021-07-03T16:07:30Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Sigma-Delta and Distributed Noise-Shaping Quantization Methods for
Random Fourier Features [73.25551965751603]
We prove that our quantized RFFs allow a high accuracy approximation of the underlying kernels.
We show that the quantized RFFs can be further compressed, yielding an excellent trade-off between memory use and accuracy.
We empirically show by testing the performance of our methods on several machine learning tasks that our method compares favorably to other state of the art quantization methods in this context.
arXiv Detail & Related papers (2021-06-04T17:24:47Z) - Sampling Overhead Analysis of Quantum Error Mitigation: Uncoded vs.
Coded Systems [69.33243249411113]
We show that Pauli errors incur the lowest sampling overhead among a large class of realistic quantum channels.
We conceive a scheme amalgamating QEM with quantum channel coding, and analyse its sampling overhead reduction compared to pure QEM.
arXiv Detail & Related papers (2020-12-15T15:51:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.