Simulation of Shor algorithm for discrete logarithm problems with comprehensive pairs of modulo p and order q
- URL: http://arxiv.org/abs/2503.23939v2
- Date: Thu, 24 Apr 2025 12:51:36 GMT
- Title: Simulation of Shor algorithm for discrete logarithm problems with comprehensive pairs of modulo p and order q
- Authors: Kaito Kishi, Junpei Yamaguchi, Tetsuya Izu, Noboru Kunihiro,
- Abstract summary: We simulate quantum circuits that operate on general pairs of modulo $p and order $q.<n>We show how much the strength of safe-prime groups and Schnorr groups is the same if $p$ is equal.<n>In particular, it was experimentally and theoretically shown that when a carryer is used in the addition circuit, the cryptographic strength of a Schnorr group with $p=$48$ bits under Shor's algorithm is almost equivalent to that of a safe-prime group with $p=$48$ bits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The discrete logarithm problem (DLP) over finite fields, commonly used in classical cryptography, has no known polynomial-time algorithm on classical computers. However, Shor has provided its polynomial-time algorithm on quantum computers. Nevertheless, there are only few examples simulating quantum circuits that operate on general pairs of modulo $p$ and order $q$. In this paper, we constructed such quantum circuits and solved DLPs for all 1,860 possible pairs of $p$ and $q$ up to 32 qubits using a quantum simulator with PRIMEHPC FX700. From this, we obtained and verified values of the success probabilities, which had previously been heuristically analyzed by Eker\r{a}. As a result, the detailed waveform shape of the success probability of Shor's algorithm for solving the DLP, known as a periodic function of order $q$, was clarified. Additionally, we generated 1,015 quantum circuits for larger pairs of $p$ and $q$, extrapolated the circuit sizes obtained, and compared them for $p=2048$ bits between safe-prime groups and Schnorr groups. While in classical cryptography, the cipher strength of safe-prime groups and Schnorr groups is the same if $p$ is equal, we quantitatively demonstrated how much the strength of the latter decreases to the bit length of $p$ in the former when using Shor's quantum algorithm. In particular, it was experimentally and theoretically shown that when a ripple carry adder is used in the addition circuit, the cryptographic strength of a Schnorr group with $p=2048$ bits under Shor's algorithm is almost equivalent to that of a safe-prime group with $p=1024$ bits.
Related papers
- Quantum Algorithms for Stochastic Differential Equations: A Schrödingerisation Approach [29.662683446339194]
We propose quantum algorithms for linear differential equations.<n>The gate complexity of our algorithms exhibits an $mathcalO(dlog(Nd))$ dependence on the dimensions.<n>The algorithms are numerically verified for the Ornstein-Uhlenbeck processes, Brownian motions, and one-dimensional L'evy flights.
arXiv Detail & Related papers (2024-12-19T14:04:11Z) - On the practicality of quantum sieving algorithms for the shortest vector problem [42.70026220176376]
lattice-based cryptography is one of the main candidates of post-quantum cryptography.<n> cryptographic security against quantum attackers is based on lattice problems like the shortest vector problem (SVP)<n>Asymptotic quantum speedups for solving SVP are known and rely on Grover's search.
arXiv Detail & Related papers (2024-10-17T16:54:41Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer.
Our proposed quantum algorithm operates in the standard $s-sparse, oracle-based query access model.
We show that a simple adaptation of our algorithm solves the random glued-trees problem in time.
arXiv Detail & Related papers (2024-05-14T15:28:37Z) - Efficient quantum algorithms for some instances of the semidirect
discrete logarithm problem [2.90985742774369]
We show that the SDLP is even easier in some important special cases.
We show that SPDH-Sign and similar cryptosystems whose security assumption is based on the presumed hardness of the SDLP are insecure against quantum attacks.
arXiv Detail & Related papers (2023-12-21T16:58:59Z) - The Power of Adaptivity in Quantum Query Algorithms [0.5702169790677977]
We study the depth-computation trade-off in the query model, where the depth corresponds to the number of adaptive query rounds and the number of parallel queries per round.
We achieve the strongest known separation between quantum algorithms with $r$ versus $r-1$ rounds of adaptivity.
arXiv Detail & Related papers (2023-11-27T18:21:32Z) - Simulation of IBM's kicked Ising experiment with Projected Entangled
Pair Operator [71.10376783074766]
We perform classical simulations of the 127-qubit kicked Ising model, which was recently emulated using a quantum circuit with error mitigation.
Our approach is based on the projected entangled pair operator (PEPO) in the Heisenberg picture.
We develop a Clifford expansion theory to compute exact expectation values and use them to evaluate algorithms.
arXiv Detail & Related papers (2023-08-06T10:24:23Z) - Quantum Complexity for Discrete Logarithms and Related Problems [7.077306859247421]
We establish a generic model of quantum computation for group-theoretic problems, which we call the quantum generic group model.
We show the quantum complexity lower bounds and almost matching algorithms of the DL and related problems in this model.
variations of Shor's algorithm can take advantage of classical computations to reduce the number of quantum group operations.
arXiv Detail & Related papers (2023-07-06T15:32:50Z) - Quantum Algorithms for Sampling Log-Concave Distributions and Estimating
Normalizing Constants [8.453228628258778]
We develop quantum algorithms for sampling logconcave distributions and for estimating their normalizing constants.
We exploit quantum analogs of the Monte Carlo method and quantum walks.
We also prove a $1/epsilon1-o(1)$ quantum lower bound for estimating normalizing constants.
arXiv Detail & Related papers (2022-10-12T19:10:43Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
We provide circuit-level implementations and resource estimates for several methods of block-encoding a dense $Ntimes N$ matrix of classical data to precision $epsilon$.
We examine resource tradeoffs between the different approaches and explore implementations of two separate models of quantum random access memory (QRAM)
Our results go beyond simple query complexity and provide a clear picture into the resource costs when large amounts of classical data are assumed to be accessible to quantum algorithms.
arXiv Detail & Related papers (2022-06-07T18:00:01Z) - Quantum Algorithm for Fidelity Estimation [8.270684567157987]
For two unknown mixed quantum states $rho$ and $sigma$ in an $N$-dimensional space, computing their fidelity $F(rho,sigma)$ is a basic problem.
We propose a quantum algorithm that solves this problem in $namepoly(log (N), r, 1/varepsilon)$ time.
arXiv Detail & Related papers (2021-03-16T13:57:01Z) - Quantum algorithms for spectral sums [50.045011844765185]
We propose new quantum algorithms for estimating spectral sums of positive semi-definite (PSD) matrices.
We show how the algorithms and techniques used in this work can be applied to three problems in spectral graph theory.
arXiv Detail & Related papers (2020-11-12T16:29:45Z) - Emulating Quantum Interference with Generalized Ising Machines [0.0]
This paper presents an exact and general procedure for mapping any sequence of quantum gates onto a network of probabilistic p-bits.
We can view this structure as a Boltzmann machine whose states each represent a Feynman path leading from an initial configuration of qubits to a final configuration.
Our results for mapping an arbitrary quantum circuit to a Boltzmann machine with a complex energy function should help push the boundaries of the simulability of quantum circuits with probabilistic resources.
arXiv Detail & Related papers (2020-07-14T22:10:29Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.