論文の概要: Noise-based reward-modulated learning
- arxiv url: http://arxiv.org/abs/2503.23972v1
- Date: Mon, 31 Mar 2025 11:35:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:37:57.142128
- Title: Noise-based reward-modulated learning
- Title(参考訳): 雑音に基づく報酬変調学習
- Authors: Jesús García Fernández, Nasir Ahmad, Marcel van Gerven,
- Abstract要約: 低消費電力・リアルタイムアプリケーションのための雑音に基づく生物学的学習ルールを提案する。
提案手法は,方向微分理論とヘビアン様の更新とを組み合わせて,強化学習における効率よく,勾配のない学習を可能にする。
その定式化はローカル情報のみに依存しており、ニューロモルフィックハードウェアの実装と互換性がある。
- 参考スコア(独自算出の注目度): 2.3125457626961263
- License:
- Abstract: Recent advances in reinforcement learning (RL) have led to significant improvements in task performance. However, training neural networks in an RL regime is typically achieved in combination with backpropagation, limiting their applicability in resource-constrained environments or when using non-differentiable neural networks. While noise-based alternatives like reward-modulated Hebbian learning (RMHL) have been proposed, their performance has remained limited, especially in scenarios with delayed rewards, which require retrospective credit assignment over time. Here, we derive a novel noise-based learning rule that addresses these challenges. Our approach combines directional derivative theory with Hebbian-like updates to enable efficient, gradient-free learning in RL. It features stochastic noisy neurons which can approximate gradients, and produces local synaptic updates modulated by a global reward signal. Drawing on concepts from neuroscience, our method uses reward prediction error as its optimization target to generate increasingly advantageous behavior, and incorporates an eligibility trace to facilitate temporal credit assignment in environments with delayed rewards. Its formulation relies on local information alone, making it compatible with implementations in neuromorphic hardware. Experimental validation shows that our approach significantly outperforms RMHL and is competitive with BP-based baselines, highlighting the promise of noise-based, biologically inspired learning for low-power and real-time applications.
- Abstract(参考訳): 近年の強化学習(RL)の進歩により,タスク性能が大幅に向上した。
しかしながら、RL体制でのニューラルネットワークのトレーニングは通常、バックプロパゲーションと組み合わせて達成され、リソース制約のある環境での適用性や、非微分可能なニューラルネットワークを使用する場合に制限される。
報奨変調ヘビアンラーニング(RMHL)のようなノイズベースの代替案が提案されているが、特に遅延報酬のシナリオでは、時間の経過とともに振り返りのクレジットを割り当てる必要がある。
ここでは、これらの課題に対処する新しいノイズベースの学習規則を導出する。
我々の手法は、方向微分理論とヘビアン様の更新を組み合わせることで、RLにおける効率的な勾配なし学習を可能にする。
確率ノイズニューロンは勾配を近似し、大域的な報酬信号によって変調された局所的なシナプス更新を生成する。
本手法は,神経科学の概念に基づいて,報酬予測誤差を最適化目標とし,より有利な行動を生成するとともに,報酬の遅れのある環境における時間的信用配分を促進するために,適性トレースを組み込んだ。
その定式化はローカル情報のみに依存しており、ニューロモルフィックハードウェアの実装と互換性がある。
実験により,本手法はRMHLよりも優れ,BPベースベースラインと競合し,低消費電力・リアルタイムアプリケーションに対するノイズベース,生物学的にインスパイアされた学習の可能性を浮き彫りにした。
関連論文リスト
- Randomized Forward Mode Gradient for Spiking Neural Networks in Scientific Machine Learning [4.178826560825283]
スパイキングニューラルネットワーク(SNN)は、ディープニューラルネットワークの階層的学習能力とスパイクベースの計算のエネルギー効率を組み合わせた、機械学習における有望なアプローチである。
SNNの伝統的なエンドツーエンドトレーニングは、しばしばバックプロパゲーションに基づいており、重み更新はチェーンルールによって計算された勾配から導かれる。
この手法は, 生体適合性に限界があり, ニューロモルフィックハードウェアの非効率性のため, 課題に遭遇する。
本研究では,SNNの代替トレーニング手法を導入する。後方伝搬の代わりに,前方モード内での重量摂動手法を活用する。
論文 参考訳(メタデータ) (2024-11-11T15:20:54Z) - Efficient Training of Deep Neural Operator Networks via Randomized Sampling [0.0]
ディープオペレータネットワーク(DeepNet)は、様々な科学的・工学的応用における複雑な力学のリアルタイム予測に成功している。
本稿では,DeepONetのトレーニングを取り入れたランダムサンプリング手法を提案する。
実験の結果,訓練中にトランクネットワーク入力にランダム化を組み込むことで,DeepONetの効率性と堅牢性が向上し,複雑な物理系のモデリングにおけるフレームワークの性能向上に期待できる道筋が得られた。
論文 参考訳(メタデータ) (2024-09-20T07:18:31Z) - Gradient-Free Training of Recurrent Neural Networks using Random Perturbations [1.1742364055094265]
リカレントニューラルネットワーク(RNN)は、チューリング完全性とシーケンシャルな処理能力のために、計算の潜在能力を秘めている。
時間によるバックプロパゲーション(BPTT)は、時間とともにRNNをアンロールすることでバックプロパゲーションアルゴリズムを拡張する。
BPTTは、前方と後方のフェーズをインターリーブし、正確な勾配情報を格納する必要があるなど、大きな欠点に悩まされている。
BPTTと競合するRNNにおける摂動学習に対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-05-14T21:15:29Z) - Properties and Potential Applications of Random Functional-Linked Types
of Neural Networks [81.56822938033119]
ランダム関数リンクニューラルネットワーク(RFLNN)は、深い構造を学習する別の方法を提供する。
本稿では周波数領域の観点からRFLNNの特性について考察する。
本稿では,より優れた性能でBLSネットワークを生成する手法を提案し,ポゾン方程式を解くための効率的なアルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-04-03T13:25:22Z) - Minimizing Control for Credit Assignment with Strong Feedback [65.59995261310529]
ディープニューラルネットワークにおける勾配に基づくクレジット割り当ての現在の手法は、無限小のフィードバック信号を必要とする。
我々は、神経活動に対する強いフィードバックと勾配に基づく学習を組み合わせることで、ニューラルネットワークの最適化に関する新たな視点を自然に導き出すことを示す。
DFCにおける強いフィードバックを用いることで、空間と時間において完全に局所的な学習規則を用いることで、前向きとフィードバックの接続を同時に学習できることを示す。
論文 参考訳(メタデータ) (2022-04-14T22:06:21Z) - Imitating, Fast and Slow: Robust learning from demonstrations via
decision-time planning [96.72185761508668]
テストタイムでの計画(IMPLANT)は、模倣学習のための新しいメタアルゴリズムである。
IMPLANTは,標準制御環境において,ベンチマーク模倣学習手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-07T17:16:52Z) - Improving Music Performance Assessment with Contrastive Learning [78.8942067357231]
本研究では,既存のMPAシステムを改善するための潜在的手法として,コントラスト学習について検討する。
畳み込みニューラルネットワークに適用された回帰タスクに適した重み付きコントラスト損失を導入する。
この結果から,MPA回帰タスクにおいて,コントラッシブ・ベースの手法がSoTA性能に適合し,超越できることが示唆された。
論文 参考訳(メタデータ) (2021-08-03T19:24:25Z) - Analytically Tractable Bayesian Deep Q-Learning [0.0]
我々は時間差Q-ラーニングフレームワークを適応させ、抽出可能な近似ガウス推論(TAGI)と互換性を持たせる。
我々は,TAGIがバックプロパゲーション学習ネットワークに匹敵する性能に到達できることを実証した。
論文 参考訳(メタデータ) (2021-06-21T13:11:52Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。