論文の概要: Randomized Forward Mode Gradient for Spiking Neural Networks in Scientific Machine Learning
- arxiv url: http://arxiv.org/abs/2411.07057v1
- Date: Mon, 11 Nov 2024 15:20:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:10:03.509512
- Title: Randomized Forward Mode Gradient for Spiking Neural Networks in Scientific Machine Learning
- Title(参考訳): 科学機械学習におけるスパイクニューラルネットワークのランダム化フォワードモード勾配
- Authors: Ruyin Wan, Qian Zhang, George Em Karniadakis,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、ディープニューラルネットワークの階層的学習能力とスパイクベースの計算のエネルギー効率を組み合わせた、機械学習における有望なアプローチである。
SNNの伝統的なエンドツーエンドトレーニングは、しばしばバックプロパゲーションに基づいており、重み更新はチェーンルールによって計算された勾配から導かれる。
この手法は, 生体適合性に限界があり, ニューロモルフィックハードウェアの非効率性のため, 課題に遭遇する。
本研究では,SNNの代替トレーニング手法を導入する。後方伝搬の代わりに,前方モード内での重量摂動手法を活用する。
- 参考スコア(独自算出の注目度): 4.178826560825283
- License:
- Abstract: Spiking neural networks (SNNs) represent a promising approach in machine learning, combining the hierarchical learning capabilities of deep neural networks with the energy efficiency of spike-based computations. Traditional end-to-end training of SNNs is often based on back-propagation, where weight updates are derived from gradients computed through the chain rule. However, this method encounters challenges due to its limited biological plausibility and inefficiencies on neuromorphic hardware. In this study, we introduce an alternative training approach for SNNs. Instead of using back-propagation, we leverage weight perturbation methods within a forward-mode gradient framework. Specifically, we perturb the weight matrix with a small noise term and estimate gradients by observing the changes in the network output. Experimental results on regression tasks, including solving various PDEs, show that our approach achieves competitive accuracy, suggesting its suitability for neuromorphic systems and potential hardware compatibility.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、ディープニューラルネットワークの階層的学習能力とスパイクベースの計算のエネルギー効率を組み合わせた、機械学習における有望なアプローチである。
SNNの伝統的なエンドツーエンドトレーニングは、しばしばバックプロパゲーションに基づいており、重み更新はチェーンルールによって計算された勾配から導かれる。
しかし, 本手法は, 生体適合性に限界があり, ニューロモルフィックハードウェアの非効率性のため, 課題に直面している。
本研究では,SNNに対する代替トレーニング手法を提案する。
バックプロパゲーションの代わりに、フォワードモード勾配フレームワーク内の重み摂動手法を利用する。
具体的には、重み行列を小さな雑音項で摂動し、ネットワーク出力の変化を観察して勾配を推定する。
様々なPDEを解くことを含む回帰タスクの実験結果から,本手法が競合精度を達成し,ニューロモルフィックシステムへの適合性や潜在的なハードウェア互換性が示唆された。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
神経の持続性に影響を与える主な要因は,ネットワークの重みのばらつきと大きな重みの空間集中である。
単一層ではなく,ニューラルネットワーク全体へのニューラルネットワークの持続性に基づくフィルタリングの拡張を提案する。
これにより、ネットワーク内の永続的なパスを暗黙的に取り込み、分散に関連する問題を緩和するディープグラフの永続性測定が得られます。
論文 参考訳(メタデータ) (2023-07-20T13:34:11Z) - Learning fixed points of recurrent neural networks by reparameterizing
the network model [0.0]
計算神経科学において、リカレントニューラルネットワークの固定点は、静的またはゆっくりと変化する刺激に対する神経反応をモデル化するために一般的に用いられる。
自然なアプローチは、シナプス重みのユークリッド空間上の勾配勾配を利用することである。
この手法は, 損失面に生じる特異点により, 学習性能が低下する可能性があることを示す。
論文 参考訳(メタデータ) (2023-07-13T13:09:11Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - SPIDE: A Purely Spike-based Method for Training Feedback Spiking Neural
Networks [56.35403810762512]
イベントベースの計算を伴うスパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェアにおけるエネルギー効率の高い応用のために、脳にインスパイアされたモデルを約束している。
本研究では,最近提案されたトレーニング手法を拡張した平衡状態(SPIDE)に対するスパイクに基づく暗黙差分法について検討した。
論文 参考訳(メタデータ) (2023-02-01T04:22:59Z) - Variational Tensor Neural Networks for Deep Learning [0.0]
深部ニューラルネットワーク(NN)へのテンソルネットワーク(TN)の統合を提案する。
これにより、大きなパラメータ空間上で効率的にトレーニングできるスケーラブルなテンソルニューラルネットワーク(TNN)アーキテクチャが実現される。
我々はTNNモデルを設計し、線形および非線形回帰、データ分類、MNIST手書き桁の画像認識のためのベンチマーク結果を提供することにより、提案手法の精度と効率を検証した。
論文 参考訳(メタデータ) (2022-11-26T20:24:36Z) - Exact Gradient Computation for Spiking Neural Networks Through Forward
Propagation [39.33537954568678]
従来のニューラルネットワークに代わるものとして、スパイキングニューラルネットワーク(SNN)が登場している。
本稿では,SNNの正確な勾配を計算できるEmphforward propagation (FP)と呼ばれる新しいトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-18T20:28:21Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - Gradient-trained Weights in Wide Neural Networks Align Layerwise to
Error-scaled Input Correlations [11.176824373696324]
我々は、勾配降下によって訓練された非線形活性化を伴う無限幅ニューラルネットワークの層方向の重みダイナミクスを導出する。
我々は、バックプロパゲーションと同じアライメントを理論的に達成するバックプロパゲーションフリー学習ルール、Align-zeroとAlign-adaを定式化した。
論文 参考訳(メタデータ) (2021-06-15T21:56:38Z) - Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism [1.6114012813668932]
非線形偏微分方程式(PDE)の数値解に対するディープニューラルネットワークの有望な応用として、物理情報ニューラルネットワーク(PINN)が登場した。
そこで本研究では,PINNを適応的にトレーニングする方法として,適応重みを完全にトレーニング可能とし,各トレーニングポイントに個別に適用する手法を提案する。
線形および非線形のベンチマーク問題による数値実験では、SA-PINNはL2エラーにおいて他の最先端のPINNアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-09-07T04:07:52Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。