論文の概要: Wasserstein KL-divergence for Gaussian distributions
- arxiv url: http://arxiv.org/abs/2503.24022v1
- Date: Mon, 31 Mar 2025 12:49:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:34:05.198612
- Title: Wasserstein KL-divergence for Gaussian distributions
- Title(参考訳): ガウス分布に対するワッサーシュタインKL-発散
- Authors: Adwait Datar, Nihat Ay,
- Abstract要約: このバージョンはサンプル空間 $Bbb Rn$ の幾何と整合であることを示す。
特に、2点に集中したディラック測度のWKL偏差は、これらの点間の2乗距離に比例する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We introduce a new version of the KL-divergence for Gaussian distributions which is based on Wasserstein geometry and referred to as WKL-divergence. We show that this version is consistent with the geometry of the sample space ${\Bbb R}^n$. In particular, we can evaluate the WKL-divergence of the Dirac measures concentrated in two points which turns out to be proportional to the squared distance between these points.
- Abstract(参考訳): ワッサーシュタイン幾何学に基づいてWKL分割と呼ばれるガウス分布に対するKL分割の新バージョンを導入する。
このバージョンはサンプル空間 ${\Bbb R}^n$ の幾何と一致することを示す。
特に、2点に集中したディラック測度のWKL偏差は、これらの点間の2乗距離に比例する。
関連論文リスト
- Statistical and Geometrical properties of regularized Kernel Kullback-Leibler divergence [7.273481485032721]
Bach [2022] が導入したカーネル共分散作用素によるクルバック・リーブラ発散の統計的および幾何学的性質について検討する。
密度比を含む古典的なクルバック・リーブラー(KL)の発散とは異なり、KKLは再現可能なカーネルヒルベルト空間(RKHS)における共分散作用素(埋め込み)による確率分布を比較する。
この斬新な発散は、確率分布と最大平均誤差のようなカーネル埋め込みメトリクスの間の標準のクルバック・リーバーと平行だが異なる側面を共有する。
論文 参考訳(メタデータ) (2024-08-29T14:01:30Z) - Bayesian Circular Regression with von Mises Quasi-Processes [57.88921637944379]
本研究では、円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
後部推論のために,高速ギブズサンプリングに寄与するストラトノビッチ様拡張法を導入する。
本研究では,このモデルを用いて風向予測と走行歩行周期のパーセンテージを関節角度の関数として適用する実験を行った。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Energy-Based Sliced Wasserstein Distance [47.18652387199418]
スライスされたワッサーシュタイン(SW)距離の鍵成分はスライス分布である。
本研究では,スライシング分布をパラメータフリーなエネルギーベース分布として設計する。
次に、新しいスライスされたワッセルシュタイン計量、エネルギーベースのスライスされたワッセルシュタイン距離(EBSW)を導出する。
論文 参考訳(メタデータ) (2023-04-26T14:28:45Z) - Forward-backward Gaussian variational inference via JKO in the
Bures-Wasserstein Space [19.19325201882727]
変分推論 (VI) は、ターゲット分布の$pi$を、抽出可能な分布の族の元によって近似しようとする。
本研究では,フォワード・バック・ガウス変分推論(FB-GVI)アルゴリズムを開発し,ガウスVIを解く。
提案アルゴリズムでは,$pi$ が log-smooth かつ log-concave である場合に,最先端の収束保証が得られる。
論文 参考訳(メタデータ) (2023-04-10T19:49:50Z) - Concentration Bounds for Discrete Distribution Estimation in KL
Divergence [21.640337031842368]
平均スケールからの偏差が$sqrtk/n$とすると、$n ge k$は$k/n$の最良の事前結果を改善する。
また、一致した下界を確立し、この境界が多対数因子に密接であることを示す。
論文 参考訳(メタデータ) (2023-02-14T07:17:19Z) - Wrapped Distributions on homogeneous Riemannian manifolds [58.720142291102135]
パラメータ、対称性、モダリティなどの分布の性質の制御は、フレキシブルな分布の族を生み出す。
変動型オートエンコーダと潜在空間ネットワークモデル内で提案した分布を利用して,我々のアプローチを実証的に検証する。
論文 参考訳(メタデータ) (2022-04-20T21:25:21Z) - A Note on Optimizing Distributions using Kernel Mean Embeddings [94.96262888797257]
カーネル平均埋め込みは、その無限次元平均埋め込みによる確率測度を表す。
カーネルが特徴的である場合、カーネルの総和密度を持つ分布は密度が高いことを示す。
有限サンプル設定でそのような分布を最適化するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2021-06-18T08:33:45Z) - KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint
Support [27.165565512841656]
移動音源と固定目標分布との間のクルバック・リーブラー分岐に対する緩和近似の勾配流について検討した。
この近似は KALE (KL 近似下界推定器) と呼ばれ、関数の制限クラス上で KL を定義するフェンシェル双対問題の正規化版を解く。
論文 参考訳(メタデータ) (2021-06-16T16:37:43Z) - Exact Recovery in the General Hypergraph Stochastic Block Model [92.28929858529679]
本稿では,d-uniform hypergraph block model(d-HSBM)の正確な回復の基本的な限界について検討する。
精度の高いしきい値が存在し、正確な回復がしきい値の上に達成でき、その下には不可能であることを示す。
論文 参考訳(メタデータ) (2021-05-11T03:39:08Z) - $\alpha$-Geodesical Skew Divergence [5.3556221126231085]
非対称スキュー発散は、パラメータ$lambda$によって決定される程度に、他の分布と混合することによって、分布の1つを滑らかにする。
このような発散は、KL発散の近似であり、ターゲット分布がソース分布に関して絶対連続である必要はない。
論文 参考訳(メタデータ) (2021-03-31T13:27:58Z) - A diffusion approach to Stein's method on Riemannian manifolds [65.36007959755302]
我々は、ターゲット不変測度を持つ$mathbf M$上の拡散の生成元と、その特徴付けStein演算子との関係を利用する。
我々は、スタイン方程式とその微分に解を束縛するスタイン因子を導出する。
我々は、$mathbf M$ が平坦多様体であるとき、$mathbb Rm$ の有界が有効であることを暗示する。
論文 参考訳(メタデータ) (2020-03-25T17:03:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。