Coherent microwave control of coupled electron-muon centers
- URL: http://arxiv.org/abs/2503.24023v1
- Date: Mon, 31 Mar 2025 12:50:05 GMT
- Title: Coherent microwave control of coupled electron-muon centers
- Authors: Andrin Doll, Chennan Wang, Thomas Prokscha, Jan Dreiser, Zaher Salman,
- Abstract summary: We study a quantum system which consists of a coupled electron-moun spin state, i.e., muonium, a light isotope of hydrogen.<n>We demonstrate the most fundamental coherent control techniques by microwave excitation of spin transitions.<n>We expect that these capabilities will provide a powerful tool to investigate the effect of the environment on isolated coupled spins.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coherent control by means of tailored excitation is a key to versatile experimental schemes for spectroscopic investigation and technological utilization of quantum systems. Here we study a quantum system which consists of a coupled electron-moun spin state, i.e., muonium, a light isotope of hydrogen. We demonstrate the most fundamental coherent control techniques by microwave excitation of spin transitions, namely driven Rabi oscillations and Ramsey fringes upon free evolution. Unprecedented performance is achieved by the microwave hardware devised for these experiments, which enables coherent spin manipulation of individual, isolated, muonium centers. For muonium formed in SiO$_2$ with strong electron-muon hyperfine interaction, a virtually undamped free precession signal is observed up to a 3.5 $\mu$s time window. For muonium formed in Si with weak and anisotropic hyperfine interaction, a strong drive at the multi-quantum transition decouples the muonium center from its magnetic environment formed by the bath of $^{29}$Si nuclear spins at natural abundance. We expect that these capabilities will provide a powerful tool to investigate the effect of the environment on isolated coupled spins, uncover the details of coupled electron-muon systems in matter and validate quantum electrodynamics in the context of muonium spectroscopy.
Related papers
- Nonlinear Tripartite Coupling of Single Electrons on Solid Neon with Magnons in a Hybrid Quantum System [0.32885740436059047]
Coherent nonlinear tripartite interactions are critical for advancing quantum simulation and information processing in hybrid quantum systems.<n>Here, we predict a tripartite coupling mechanism in a hybrid setup comprising a single electron trapped on a solid neon surface and a nearby micromagnet.<n>Thanks to the large spatial extent of the electron zero-point motion, we show that it is possible to obtain a tunable and strong spin-magnon-motion coupling at the single quantum level.
arXiv Detail & Related papers (2025-03-11T16:22:44Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Cavity Moiré Materials: Controlling Magnetic Frustration with Quantum Light-Matter Interaction [0.0]
We develop a theory of moir'e materials confined in a cavity consisting of thin polar van der Waals crystals.
Nontrivial quantum geometry of moir'e flat bands leads to electromagnetic vacuum dressing of electrons.
Results indicate that the cavity confinement enables one to control magnetic frustration of moir'e materials.
arXiv Detail & Related papers (2023-02-22T19:00:01Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Nuclear spin readout in a cavity-coupled hybrid quantum dot-donor system [0.0]
Nuclear spins show long coherence times and are well isolated from the environment.
We present a method for nuclear spin readout by probing the transmission of a microwave resonator.
arXiv Detail & Related papers (2020-12-02T16:51:50Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Room Temperature Coherent Control of Spin Defects in hexagonal Boron
Nitride [0.0]
Optically active defects in solids with accessible spin states are promising candidates for solid state quantum information and sensing applications.
We realize coherent control of ensembles of boron vacancy centers in hexagonal boron nitride (hBN)
Our results are important for employment of van der Waals materials for quantum technologies.
arXiv Detail & Related papers (2020-10-23T16:31:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.