論文の概要: Frequency-Aware Attention-LSTM for PM$_{2.5}$ Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2503.24043v1
- Date: Mon, 31 Mar 2025 13:07:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:34:10.505424
- Title: Frequency-Aware Attention-LSTM for PM$_{2.5}$ Time Series Forecasting
- Title(参考訳): PM$_{2.5}$時系列予測のための周波数アテンションLSTM
- Authors: Jiahui LU, Shuang Wu, Zhenkai Qin, Dongze Wu, Guifang Yang,
- Abstract要約: FALNetは周波数対応LSTMネットワークであり、周波数領域の分解、時間的モデリング、注意に基づく改善を統合している。
実世界の都市大気質データセットで実施された実験は、FALNetが従来のモデルより一貫して優れていることを示した。
- 参考スコア(独自算出の注目度): 5.104334766307239
- License:
- Abstract: To enhance the accuracy and robustness of PM$_{2.5}$ concentration forecasting, this paper introduces FALNet, a Frequency-Aware LSTM Network that integrates frequency-domain decomposition, temporal modeling, and attention-based refinement. The model first applies STL and FFT to extract trend, seasonal, and denoised residual components, effectively filtering out high-frequency noise. The filtered residuals are then fed into a stacked LSTM to capture long-term dependencies, followed by a multi-head attention mechanism that dynamically focuses on key time steps. Experiments conducted on real-world urban air quality datasets demonstrate that FALNet consistently outperforms conventional models across standard metrics such as MAE, RMSE, and $R^2$. The model shows strong adaptability in capturing sharp fluctuations during pollution peaks and non-stationary conditions. These results validate the effectiveness and generalizability of FALNet for real-time air pollution prediction, environmental risk assessment, and decision-making support.
- Abstract(参考訳): PM$_{2.5}$濃度予測の精度とロバスト性を高めるため,周波数領域分解,時間モデル,注意に基づく改善を統合した周波数対応LSTMネットワークであるFALNetを紹介した。
まず、STLとFFTを適用して、トレンド、季節、および復調された残留成分を抽出し、高周波ノイズを効果的に除去する。
フィルタされた残留物は、長期依存関係をキャプチャするために積み重ねられたLSTMに送られ、その後、キータイムステップに動的にフォーカスするマルチヘッドアテンションメカニズムが続く。
FALNetはMAE, RMSE, および$R^2$といった標準指標において, 従来モデルよりも一貫して優れていた。
このモデルでは, 汚染ピークと非定常条件の間, 急激な変動を捉えることに強い適応性を示す。
これらの結果は, リアルタイム大気汚染予測, 環境リスク評価, 意思決定支援におけるFALNetの有効性と一般化性について検証した。
関連論文リスト
- LMS-AutoTSF: Learnable Multi-Scale Decomposition and Integrated Autocorrelation for Time Series Forecasting [4.075971633195745]
自動相関を組み込んだ新しい時系列予測アーキテクチャであるLMS-AutoTSFを紹介する。
事前定義されたトレンドと季節的なコンポーネントに依存するモデルとは異なり、LMS-AutoTSFはスケール毎に2つの独立したエンコーダを使用する。
このアプローチにおける重要な革新は、時間ステップの差分を計算することによって達成される自己相関の統合です。
論文 参考訳(メタデータ) (2024-12-09T09:31:58Z) - Oscillatory State-Space Models [61.923849241099184]
長いシーケンスを効率的に学習するための線形状態空間モデル(LinOSS)を提案する。
高速な連想並列スキャンを用いて時間とともに統合された安定な離散化により、提案した状態空間モデルが得られる。
我々はLinOSSが普遍であること、すなわち時間変化関数間の連続および因果作用素写像を近似できることを示す。
論文 参考訳(メタデータ) (2024-10-04T22:00:13Z) - MMFNet: Multi-Scale Frequency Masking Neural Network for Multivariate Time Series Forecasting [6.733646592789575]
長期時系列予測(LTSF)は、電力消費計画、財務予測、疾病の伝播分析など、多くの実世界の応用において重要である。
MMFNetは,マルチスケールマスク付き周波数分解手法を利用して,長期多変量予測を向上する新しいモデルである。
MMFNetは、時系列を様々なスケールの周波数セグメントに変換し、学習可能なマスクを用いて非関連成分を適応的にフィルタリングすることで、微細で中間的で粗い時間パターンをキャプチャする。
論文 参考訳(メタデータ) (2024-10-02T22:38:20Z) - Tuning Frequency Bias of State Space Models [48.60241978021799]
状態空間モデル(SSM)は、線形時間不変(LTI)システムを利用して、長距離依存のシーケンスを学習する。
その結果,SSMは低周波成分を高周波成分よりも効果的に捕捉する傾向を示した。
論文 参考訳(メタデータ) (2024-10-02T21:04:22Z) - Frequency-domain MLPs are More Effective Learners in Time Series
Forecasting [67.60443290781988]
時系列予測は、金融、交通、エネルギー、医療など、さまざまな産業領域において重要な役割を果たしてきた。
最多ベースの予測手法は、ポイントワイドマッピングと情報のボトルネックに悩まされる。
本稿では、時系列予測のための周波数領域上に構築された、シンプルで効果的なアーキテクチャであるFreTSを提案する。
論文 参考訳(メタデータ) (2023-11-10T17:05:13Z) - Unlocking the Potential of Deep Learning in Peak-Hour Series Forecasting [19.396667925659507]
本稿では,Pak-Hour Series Forecasting (PHSF)タスクに特化して設計された新しいフレームワークであるSeq2Peakについて述べる。
非定常性問題を緩和するCyclicNormパイプラインと、シンプルだが効果的なトレーニング可能なパラメータフリーのピーク時デコーダの2つの重要なコンポーネントを提供する。
公開されている時系列データセットの実験は、提案フレームワークの有効性を実証している。
論文 参考訳(メタデータ) (2023-07-04T09:38:38Z) - Certified Adversarial Defenses Meet Out-of-Distribution Corruptions:
Benchmarking Robustness and Simple Baselines [65.0803400763215]
この研究は、最先端のロバストモデルがアウト・オブ・ディストリビューションデータに遭遇した場合、敵のロバスト性がどのように変化を保証しているかを批判的に検証する。
本稿では,トレーニングデータのスペクトルカバレッジを改善するために,新たなデータ拡張方式であるFourierMixを提案する。
また,FourierMixの拡張により,様々なOODベンチマークにおいて,より優れたロバスト性保証を実現することが可能となる。
論文 参考訳(メタデータ) (2021-12-01T17:11:22Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
本稿では,深部自己回帰モデルとスペクトル注意(SA)モジュールを組み合わせた予測アーキテクチャを提案する。
時系列の埋め込みをランダムなプロセスの発生としてスペクトル領域に特徴付けることにより,グローバルな傾向と季節パターンを同定することができる。
時系列に対するグローバルとローカルの2つのスペクトルアテンションモデルは、この情報を予測の中に統合し、スペクトルフィルタリングを行い、時系列のノイズを除去する。
論文 参考訳(メタデータ) (2021-07-13T11:08:47Z) - Machine Learning for Postprocessing Ensemble Streamflow Forecasts [0.0]
機械学習と動的モデリングを統合して,短期から中規模(1~7日)におけるストリームフロー予測の質向上を実証する。
我々はLong Short-Term Memory(LSTM)ニューラルネットワークを用いて、動的モデリングから得られた生のアンサンブルストリームフロー予測における予測バイアスを補正する。
検証結果から,LSTMは気候,時間的持続性,決定論的,生のアンサンブル予測に対して,ストリームフロー予測を改善することができることが示された。
論文 参考訳(メタデータ) (2021-06-15T18:46:30Z) - Learning representations with end-to-end models for improved remaining
useful life prognostics [64.80885001058572]
残りの設備の実用寿命(RUL)は、現在の時刻と故障までの期間として定義される。
マルチ層パーセプトロンと長期メモリ層(LSTM)に基づくエンドツーエンドのディープラーニングモデルを提案し、RULを予測する。
提案するエンド・ツー・エンドのモデルがこのような優れた結果を達成し、他のディープラーニングや最先端の手法と比較する方法について論じる。
論文 参考訳(メタデータ) (2021-04-11T16:45:18Z) - Prediction of financial time series using LSTM and data denoising
methods [0.29923891863939933]
本稿では,ウェーブレット変換 (WT) と特異スペクトル解析 (SSA) を含むデータデノイジング法に基づくアンサンブル法を提案する。
WTとSSAは、元のシーケンスから有用な情報を抽出し、オーバーフィッティングを避けるため、ハイブリッドモデルはDJIAの閉値のシーケンスパターンをよりよく把握することができる。
論文 参考訳(メタデータ) (2021-03-05T07:32:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。