Towards Scientific Intelligence: A Survey of LLM-based Scientific Agents
- URL: http://arxiv.org/abs/2503.24047v2
- Date: Thu, 17 Apr 2025 07:26:34 GMT
- Title: Towards Scientific Intelligence: A Survey of LLM-based Scientific Agents
- Authors: Shuo Ren, Pu Jian, Zhenjiang Ren, Chunlin Leng, Can Xie, Jiajun Zhang,
- Abstract summary: Large language models (LLMs) are evolving into scientific agents that automate critical tasks.<n>Unlike general-purpose LLMs, specialized agents integrate domain-specific knowledge, advanced tool sets, and robust validation mechanisms.<n>We highlight why they differ from general agents and the ways in which they advance research across various scientific fields.
- Score: 11.74019905854637
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As scientific research becomes increasingly complex, innovative tools are needed to manage vast data, facilitate interdisciplinary collaboration, and accelerate discovery. Large language models (LLMs) are now evolving into LLM-based scientific agents that automate critical tasks, ranging from hypothesis generation and experiment design to data analysis and simulation. Unlike general-purpose LLMs, these specialized agents integrate domain-specific knowledge, advanced tool sets, and robust validation mechanisms, enabling them to handle complex data types, ensure reproducibility, and drive scientific breakthroughs. This survey provides a focused review of the architectures, design, benchmarks, applications, and ethical considerations surrounding LLM-based scientific agents. We highlight why they differ from general agents and the ways in which they advance research across various scientific fields. By examining their development and challenges, this survey offers a comprehensive roadmap for researchers and practitioners to harness these agents for more efficient, reliable, and ethically sound scientific discovery.
Related papers
- SciSciGPT: Advancing Human-AI Collaboration in the Science of Science [7.592219145267612]
Recent advances in large language models (LLMs) and AI agents have opened new possibilities for human-AI collaboration.
We introduce SciSciGPT, an open-source, prototype AI collaborator that uses the science of science as a testbed to explore the potential of LLM-powered research tools.
arXiv Detail & Related papers (2025-04-07T23:19:39Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence.
This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy.
Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time.
arXiv Detail & Related papers (2025-03-27T12:50:17Z) - ResearchBench: Benchmarking LLMs in Scientific Discovery via Inspiration-Based Task Decomposition [67.26124739345332]
Large language models (LLMs) have demonstrated potential in assisting scientific research, yet their ability to discover high-quality research hypotheses remains unexamined.
We introduce the first large-scale benchmark for evaluating LLMs with a near-sufficient set of sub-tasks of scientific discovery.
We develop an automated framework that extracts critical components - research questions, background surveys, inspirations, and hypotheses - from scientific papers.
arXiv Detail & Related papers (2025-03-27T08:09:15Z) - Many Heads Are Better Than One: Improved Scientific Idea Generation by A LLM-Based Multi-Agent System [62.832818186789545]
Virtual Scientists (VirSci) is a multi-agent system designed to mimic the teamwork inherent in scientific research.<n>VirSci organizes a team of agents to collaboratively generate, evaluate, and refine research ideas.<n>We show that this multi-agent approach outperforms the state-of-the-art method in producing novel scientific ideas.
arXiv Detail & Related papers (2024-10-12T07:16:22Z) - A Comprehensive Survey of Scientific Large Language Models and Their Applications in Scientific Discovery [68.48094108571432]
Large language models (LLMs) have revolutionized the way text and other modalities of data are handled.
We aim to provide a more holistic view of the research landscape by unveiling cross-field and cross-modal connections between scientific LLMs.
arXiv Detail & Related papers (2024-06-16T08:03:24Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
We propose to enhance the knowledge-driven, abstract reasoning abilities of Large Language Models with the computational strength of simulations.
We introduce Scientific Generative Agent (SGA), a bilevel optimization framework.
We conduct experiments to demonstrate our framework's efficacy in law discovery and molecular design.
arXiv Detail & Related papers (2024-05-16T03:04:10Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgent is an AI-based system for ideation and operationalization of novel work.<n>ResearchAgent automatically defines novel problems, proposes methods and designs experiments, while iteratively refining them.<n>We experimentally validate our ResearchAgent on scientific publications across multiple disciplines.
arXiv Detail & Related papers (2024-04-11T13:36:29Z) - SciOps: Achieving Productivity and Reliability in Data-Intensive Research [0.8414742293641504]
Scientists are increasingly leveraging advances in instruments, automation, and collaborative tools to scale up their experiments and research goals.
Various scientific disciplines, including neuroscience, have adopted key technologies to enhance collaboration, inspiration and automation.
We introduce a five-level Capability Maturity Model describing the principles of rigorous scientific operations.
arXiv Detail & Related papers (2023-12-29T21:37:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.